/*! * matter-js 0.20.0 by @liabru * http://brm.io/matter-js/ * License MIT * * The MIT License (MIT) * * Copyright (c) Liam Brummitt and contributors. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ (function webpackUniversalModuleDefinition(root, factory) { if(typeof exports === 'object' && typeof module === 'object') module.exports = factory(); else if(typeof define === 'function' && define.amd) define("Matter", [], factory); else if(typeof exports === 'object') exports["Matter"] = factory(); else root["Matter"] = factory(); })(this, function() { return /******/ (function(modules) { // webpackBootstrap /******/ // The module cache /******/ var installedModules = {}; /******/ /******/ // The require function /******/ function __webpack_require__(moduleId) { /******/ /******/ // Check if module is in cache /******/ if(installedModules[moduleId]) { /******/ return installedModules[moduleId].exports; /******/ } /******/ // Create a new module (and put it into the cache) /******/ var module = installedModules[moduleId] = { /******/ i: moduleId, /******/ l: false, /******/ exports: {} /******/ }; /******/ /******/ // Execute the module function /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); /******/ /******/ // Flag the module as loaded /******/ module.l = true; /******/ /******/ // Return the exports of the module /******/ return module.exports; /******/ } /******/ /******/ /******/ // expose the modules object (__webpack_modules__) /******/ __webpack_require__.m = modules; /******/ /******/ // expose the module cache /******/ __webpack_require__.c = installedModules; /******/ /******/ // define getter function for harmony exports /******/ __webpack_require__.d = function(exports, name, getter) { /******/ if(!__webpack_require__.o(exports, name)) { /******/ Object.defineProperty(exports, name, { enumerable: true, get: getter }); /******/ } /******/ }; /******/ /******/ // define __esModule on exports /******/ __webpack_require__.r = function(exports) { /******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) { /******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' }); /******/ } /******/ Object.defineProperty(exports, '__esModule', { value: true }); /******/ }; /******/ /******/ // create a fake namespace object /******/ // mode & 1: value is a module id, require it /******/ // mode & 2: merge all properties of value into the ns /******/ // mode & 4: return value when already ns object /******/ // mode & 8|1: behave like require /******/ __webpack_require__.t = function(value, mode) { /******/ if(mode & 1) value = __webpack_require__(value); /******/ if(mode & 8) return value; /******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value; /******/ var ns = Object.create(null); /******/ __webpack_require__.r(ns); /******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value }); /******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key)); /******/ return ns; /******/ }; /******/ /******/ // getDefaultExport function for compatibility with non-harmony modules /******/ __webpack_require__.n = function(module) { /******/ var getter = module && module.__esModule ? /******/ function getDefault() { return module['default']; } : /******/ function getModuleExports() { return module; }; /******/ __webpack_require__.d(getter, 'a', getter); /******/ return getter; /******/ }; /******/ /******/ // Object.prototype.hasOwnProperty.call /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); }; /******/ /******/ // __webpack_public_path__ /******/ __webpack_require__.p = ""; /******/ /******/ /******/ // Load entry module and return exports /******/ return __webpack_require__(__webpack_require__.s = 20); /******/ }) /************************************************************************/ /******/ ([ /* 0 */ /***/ (function(module, exports) { /** * The `Matter.Common` module contains utility functions that are common to all modules. * * @class Common */ var Common = {}; module.exports = Common; (function() { Common._baseDelta = 1000 / 60; Common._nextId = 0; Common._seed = 0; Common._nowStartTime = +(new Date()); Common._warnedOnce = {}; Common._decomp = null; /** * Extends the object in the first argument using the object in the second argument. * @method extend * @param {} obj * @param {boolean} deep * @return {} obj extended */ Common.extend = function(obj, deep) { var argsStart, args, deepClone; if (typeof deep === 'boolean') { argsStart = 2; deepClone = deep; } else { argsStart = 1; deepClone = true; } for (var i = argsStart; i < arguments.length; i++) { var source = arguments[i]; if (source) { for (var prop in source) { if (deepClone && source[prop] && source[prop].constructor === Object) { if (!obj[prop] || obj[prop].constructor === Object) { obj[prop] = obj[prop] || {}; Common.extend(obj[prop], deepClone, source[prop]); } else { obj[prop] = source[prop]; } } else { obj[prop] = source[prop]; } } } } return obj; }; /** * Creates a new clone of the object, if deep is true references will also be cloned. * @method clone * @param {} obj * @param {bool} deep * @return {} obj cloned */ Common.clone = function(obj, deep) { return Common.extend({}, deep, obj); }; /** * Returns the list of keys for the given object. * @method keys * @param {} obj * @return {string[]} keys */ Common.keys = function(obj) { if (Object.keys) return Object.keys(obj); // avoid hasOwnProperty for performance var keys = []; for (var key in obj) keys.push(key); return keys; }; /** * Returns the list of values for the given object. * @method values * @param {} obj * @return {array} Array of the objects property values */ Common.values = function(obj) { var values = []; if (Object.keys) { var keys = Object.keys(obj); for (var i = 0; i < keys.length; i++) { values.push(obj[keys[i]]); } return values; } // avoid hasOwnProperty for performance for (var key in obj) values.push(obj[key]); return values; }; /** * Gets a value from `base` relative to the `path` string. * @method get * @param {} obj The base object * @param {string} path The path relative to `base`, e.g. 'Foo.Bar.baz' * @param {number} [begin] Path slice begin * @param {number} [end] Path slice end * @return {} The object at the given path */ Common.get = function(obj, path, begin, end) { path = path.split('.').slice(begin, end); for (var i = 0; i < path.length; i += 1) { obj = obj[path[i]]; } return obj; }; /** * Sets a value on `base` relative to the given `path` string. * @method set * @param {} obj The base object * @param {string} path The path relative to `base`, e.g. 'Foo.Bar.baz' * @param {} val The value to set * @param {number} [begin] Path slice begin * @param {number} [end] Path slice end * @return {} Pass through `val` for chaining */ Common.set = function(obj, path, val, begin, end) { var parts = path.split('.').slice(begin, end); Common.get(obj, path, 0, -1)[parts[parts.length - 1]] = val; return val; }; /** * Shuffles the given array in-place. * The function uses a seeded random generator. * @method shuffle * @param {array} array * @return {array} array shuffled randomly */ Common.shuffle = function(array) { for (var i = array.length - 1; i > 0; i--) { var j = Math.floor(Common.random() * (i + 1)); var temp = array[i]; array[i] = array[j]; array[j] = temp; } return array; }; /** * Randomly chooses a value from a list with equal probability. * The function uses a seeded random generator. * @method choose * @param {array} choices * @return {object} A random choice object from the array */ Common.choose = function(choices) { return choices[Math.floor(Common.random() * choices.length)]; }; /** * Returns true if the object is a HTMLElement, otherwise false. * @method isElement * @param {object} obj * @return {boolean} True if the object is a HTMLElement, otherwise false */ Common.isElement = function(obj) { if (typeof HTMLElement !== 'undefined') { return obj instanceof HTMLElement; } return !!(obj && obj.nodeType && obj.nodeName); }; /** * Returns true if the object is an array. * @method isArray * @param {object} obj * @return {boolean} True if the object is an array, otherwise false */ Common.isArray = function(obj) { return Object.prototype.toString.call(obj) === '[object Array]'; }; /** * Returns true if the object is a function. * @method isFunction * @param {object} obj * @return {boolean} True if the object is a function, otherwise false */ Common.isFunction = function(obj) { return typeof obj === "function"; }; /** * Returns true if the object is a plain object. * @method isPlainObject * @param {object} obj * @return {boolean} True if the object is a plain object, otherwise false */ Common.isPlainObject = function(obj) { return typeof obj === 'object' && obj.constructor === Object; }; /** * Returns true if the object is a string. * @method isString * @param {object} obj * @return {boolean} True if the object is a string, otherwise false */ Common.isString = function(obj) { return toString.call(obj) === '[object String]'; }; /** * Returns the given value clamped between a minimum and maximum value. * @method clamp * @param {number} value * @param {number} min * @param {number} max * @return {number} The value clamped between min and max inclusive */ Common.clamp = function(value, min, max) { if (value < min) return min; if (value > max) return max; return value; }; /** * Returns the sign of the given value. * @method sign * @param {number} value * @return {number} -1 if negative, +1 if 0 or positive */ Common.sign = function(value) { return value < 0 ? -1 : 1; }; /** * Returns the current timestamp since the time origin (e.g. from page load). * The result is in milliseconds and will use high-resolution timing if available. * @method now * @return {number} the current timestamp in milliseconds */ Common.now = function() { if (typeof window !== 'undefined' && window.performance) { if (window.performance.now) { return window.performance.now(); } else if (window.performance.webkitNow) { return window.performance.webkitNow(); } } if (Date.now) { return Date.now(); } return (new Date()) - Common._nowStartTime; }; /** * Returns a random value between a minimum and a maximum value inclusive. * The function uses a seeded random generator. * @method random * @param {number} min * @param {number} max * @return {number} A random number between min and max inclusive */ Common.random = function(min, max) { min = (typeof min !== "undefined") ? min : 0; max = (typeof max !== "undefined") ? max : 1; return min + _seededRandom() * (max - min); }; var _seededRandom = function() { // https://en.wikipedia.org/wiki/Linear_congruential_generator Common._seed = (Common._seed * 9301 + 49297) % 233280; return Common._seed / 233280; }; /** * Converts a CSS hex colour string into an integer. * @method colorToNumber * @param {string} colorString * @return {number} An integer representing the CSS hex string */ Common.colorToNumber = function(colorString) { colorString = colorString.replace('#',''); if (colorString.length == 3) { colorString = colorString.charAt(0) + colorString.charAt(0) + colorString.charAt(1) + colorString.charAt(1) + colorString.charAt(2) + colorString.charAt(2); } return parseInt(colorString, 16); }; /** * The console logging level to use, where each level includes all levels above and excludes the levels below. * The default level is 'debug' which shows all console messages. * * Possible level values are: * - 0 = None * - 1 = Debug * - 2 = Info * - 3 = Warn * - 4 = Error * @static * @property logLevel * @type {Number} * @default 1 */ Common.logLevel = 1; /** * Shows a `console.log` message only if the current `Common.logLevel` allows it. * The message will be prefixed with 'matter-js' to make it easily identifiable. * @method log * @param ...objs {} The objects to log. */ Common.log = function() { if (console && Common.logLevel > 0 && Common.logLevel <= 3) { console.log.apply(console, ['matter-js:'].concat(Array.prototype.slice.call(arguments))); } }; /** * Shows a `console.info` message only if the current `Common.logLevel` allows it. * The message will be prefixed with 'matter-js' to make it easily identifiable. * @method info * @param ...objs {} The objects to log. */ Common.info = function() { if (console && Common.logLevel > 0 && Common.logLevel <= 2) { console.info.apply(console, ['matter-js:'].concat(Array.prototype.slice.call(arguments))); } }; /** * Shows a `console.warn` message only if the current `Common.logLevel` allows it. * The message will be prefixed with 'matter-js' to make it easily identifiable. * @method warn * @param ...objs {} The objects to log. */ Common.warn = function() { if (console && Common.logLevel > 0 && Common.logLevel <= 3) { console.warn.apply(console, ['matter-js:'].concat(Array.prototype.slice.call(arguments))); } }; /** * Uses `Common.warn` to log the given message one time only. * @method warnOnce * @param ...objs {} The objects to log. */ Common.warnOnce = function() { var message = Array.prototype.slice.call(arguments).join(' '); if (!Common._warnedOnce[message]) { Common.warn(message); Common._warnedOnce[message] = true; } }; /** * Shows a deprecated console warning when the function on the given object is called. * The target function will be replaced with a new function that first shows the warning * and then calls the original function. * @method deprecated * @param {object} obj The object or module * @param {string} name The property name of the function on obj * @param {string} warning The one-time message to show if the function is called */ Common.deprecated = function(obj, prop, warning) { obj[prop] = Common.chain(function() { Common.warnOnce('🔅 deprecated 🔅', warning); }, obj[prop]); }; /** * Returns the next unique sequential ID. * @method nextId * @return {Number} Unique sequential ID */ Common.nextId = function() { return Common._nextId++; }; /** * A cross browser compatible indexOf implementation. * @method indexOf * @param {array} haystack * @param {object} needle * @return {number} The position of needle in haystack, otherwise -1. */ Common.indexOf = function(haystack, needle) { if (haystack.indexOf) return haystack.indexOf(needle); for (var i = 0; i < haystack.length; i++) { if (haystack[i] === needle) return i; } return -1; }; /** * A cross browser compatible array map implementation. * @method map * @param {array} list * @param {function} func * @return {array} Values from list transformed by func. */ Common.map = function(list, func) { if (list.map) { return list.map(func); } var mapped = []; for (var i = 0; i < list.length; i += 1) { mapped.push(func(list[i])); } return mapped; }; /** * Takes a directed graph and returns the partially ordered set of vertices in topological order. * Circular dependencies are allowed. * @method topologicalSort * @param {object} graph * @return {array} Partially ordered set of vertices in topological order. */ Common.topologicalSort = function(graph) { // https://github.com/mgechev/javascript-algorithms // Copyright (c) Minko Gechev (MIT license) // Modifications: tidy formatting and naming var result = [], visited = [], temp = []; for (var node in graph) { if (!visited[node] && !temp[node]) { Common._topologicalSort(node, visited, temp, graph, result); } } return result; }; Common._topologicalSort = function(node, visited, temp, graph, result) { var neighbors = graph[node] || []; temp[node] = true; for (var i = 0; i < neighbors.length; i += 1) { var neighbor = neighbors[i]; if (temp[neighbor]) { // skip circular dependencies continue; } if (!visited[neighbor]) { Common._topologicalSort(neighbor, visited, temp, graph, result); } } temp[node] = false; visited[node] = true; result.push(node); }; /** * Takes _n_ functions as arguments and returns a new function that calls them in order. * The arguments applied when calling the new function will also be applied to every function passed. * The value of `this` refers to the last value returned in the chain that was not `undefined`. * Therefore if a passed function does not return a value, the previously returned value is maintained. * After all passed functions have been called the new function returns the last returned value (if any). * If any of the passed functions are a chain, then the chain will be flattened. * @method chain * @param ...funcs {function} The functions to chain. * @return {function} A new function that calls the passed functions in order. */ Common.chain = function() { var funcs = []; for (var i = 0; i < arguments.length; i += 1) { var func = arguments[i]; if (func._chained) { // flatten already chained functions funcs.push.apply(funcs, func._chained); } else { funcs.push(func); } } var chain = function() { // https://github.com/GoogleChrome/devtools-docs/issues/53#issuecomment-51941358 var lastResult, args = new Array(arguments.length); for (var i = 0, l = arguments.length; i < l; i++) { args[i] = arguments[i]; } for (i = 0; i < funcs.length; i += 1) { var result = funcs[i].apply(lastResult, args); if (typeof result !== 'undefined') { lastResult = result; } } return lastResult; }; chain._chained = funcs; return chain; }; /** * Chains a function to excute before the original function on the given `path` relative to `base`. * See also docs for `Common.chain`. * @method chainPathBefore * @param {} base The base object * @param {string} path The path relative to `base` * @param {function} func The function to chain before the original * @return {function} The chained function that replaced the original */ Common.chainPathBefore = function(base, path, func) { return Common.set(base, path, Common.chain( func, Common.get(base, path) )); }; /** * Chains a function to excute after the original function on the given `path` relative to `base`. * See also docs for `Common.chain`. * @method chainPathAfter * @param {} base The base object * @param {string} path The path relative to `base` * @param {function} func The function to chain after the original * @return {function} The chained function that replaced the original */ Common.chainPathAfter = function(base, path, func) { return Common.set(base, path, Common.chain( Common.get(base, path), func )); }; /** * Provide the [poly-decomp](https://github.com/schteppe/poly-decomp.js) library module to enable * concave vertex decomposition support when using `Bodies.fromVertices` e.g. `Common.setDecomp(require('poly-decomp'))`. * @method setDecomp * @param {} decomp The [poly-decomp](https://github.com/schteppe/poly-decomp.js) library module. */ Common.setDecomp = function(decomp) { Common._decomp = decomp; }; /** * Returns the [poly-decomp](https://github.com/schteppe/poly-decomp.js) library module provided through `Common.setDecomp`, * otherwise returns the global `decomp` if set. * @method getDecomp * @return {} The [poly-decomp](https://github.com/schteppe/poly-decomp.js) library module if provided. */ Common.getDecomp = function() { // get user provided decomp if set var decomp = Common._decomp; try { // otherwise from window global if (!decomp && typeof window !== 'undefined') { decomp = window.decomp; } // otherwise from node global if (!decomp && typeof global !== 'undefined') { decomp = global.decomp; } } catch (e) { // decomp not available decomp = null; } return decomp; }; })(); /***/ }), /* 1 */ /***/ (function(module, exports) { /** * The `Matter.Bounds` module contains methods for creating and manipulating axis-aligned bounding boxes (AABB). * * @class Bounds */ var Bounds = {}; module.exports = Bounds; (function() { /** * Creates a new axis-aligned bounding box (AABB) for the given vertices. * @method create * @param {vertices} vertices * @return {bounds} A new bounds object */ Bounds.create = function(vertices) { var bounds = { min: { x: 0, y: 0 }, max: { x: 0, y: 0 } }; if (vertices) Bounds.update(bounds, vertices); return bounds; }; /** * Updates bounds using the given vertices and extends the bounds given a velocity. * @method update * @param {bounds} bounds * @param {vertices} vertices * @param {vector} velocity */ Bounds.update = function(bounds, vertices, velocity) { bounds.min.x = Infinity; bounds.max.x = -Infinity; bounds.min.y = Infinity; bounds.max.y = -Infinity; for (var i = 0; i < vertices.length; i++) { var vertex = vertices[i]; if (vertex.x > bounds.max.x) bounds.max.x = vertex.x; if (vertex.x < bounds.min.x) bounds.min.x = vertex.x; if (vertex.y > bounds.max.y) bounds.max.y = vertex.y; if (vertex.y < bounds.min.y) bounds.min.y = vertex.y; } if (velocity) { if (velocity.x > 0) { bounds.max.x += velocity.x; } else { bounds.min.x += velocity.x; } if (velocity.y > 0) { bounds.max.y += velocity.y; } else { bounds.min.y += velocity.y; } } }; /** * Returns true if the bounds contains the given point. * @method contains * @param {bounds} bounds * @param {vector} point * @return {boolean} True if the bounds contain the point, otherwise false */ Bounds.contains = function(bounds, point) { return point.x >= bounds.min.x && point.x <= bounds.max.x && point.y >= bounds.min.y && point.y <= bounds.max.y; }; /** * Returns true if the two bounds intersect. * @method overlaps * @param {bounds} boundsA * @param {bounds} boundsB * @return {boolean} True if the bounds overlap, otherwise false */ Bounds.overlaps = function(boundsA, boundsB) { return (boundsA.min.x <= boundsB.max.x && boundsA.max.x >= boundsB.min.x && boundsA.max.y >= boundsB.min.y && boundsA.min.y <= boundsB.max.y); }; /** * Translates the bounds by the given vector. * @method translate * @param {bounds} bounds * @param {vector} vector */ Bounds.translate = function(bounds, vector) { bounds.min.x += vector.x; bounds.max.x += vector.x; bounds.min.y += vector.y; bounds.max.y += vector.y; }; /** * Shifts the bounds to the given position. * @method shift * @param {bounds} bounds * @param {vector} position */ Bounds.shift = function(bounds, position) { var deltaX = bounds.max.x - bounds.min.x, deltaY = bounds.max.y - bounds.min.y; bounds.min.x = position.x; bounds.max.x = position.x + deltaX; bounds.min.y = position.y; bounds.max.y = position.y + deltaY; }; })(); /***/ }), /* 2 */ /***/ (function(module, exports) { /** * The `Matter.Vector` module contains methods for creating and manipulating vectors. * Vectors are the basis of all the geometry related operations in the engine. * A `Matter.Vector` object is of the form `{ x: 0, y: 0 }`. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Vector */ // TODO: consider params for reusing vector objects var Vector = {}; module.exports = Vector; (function() { /** * Creates a new vector. * @method create * @param {number} x * @param {number} y * @return {vector} A new vector */ Vector.create = function(x, y) { return { x: x || 0, y: y || 0 }; }; /** * Returns a new vector with `x` and `y` copied from the given `vector`. * @method clone * @param {vector} vector * @return {vector} A new cloned vector */ Vector.clone = function(vector) { return { x: vector.x, y: vector.y }; }; /** * Returns the magnitude (length) of a vector. * @method magnitude * @param {vector} vector * @return {number} The magnitude of the vector */ Vector.magnitude = function(vector) { return Math.sqrt((vector.x * vector.x) + (vector.y * vector.y)); }; /** * Returns the magnitude (length) of a vector (therefore saving a `sqrt` operation). * @method magnitudeSquared * @param {vector} vector * @return {number} The squared magnitude of the vector */ Vector.magnitudeSquared = function(vector) { return (vector.x * vector.x) + (vector.y * vector.y); }; /** * Rotates the vector about (0, 0) by specified angle. * @method rotate * @param {vector} vector * @param {number} angle * @param {vector} [output] * @return {vector} The vector rotated about (0, 0) */ Vector.rotate = function(vector, angle, output) { var cos = Math.cos(angle), sin = Math.sin(angle); if (!output) output = {}; var x = vector.x * cos - vector.y * sin; output.y = vector.x * sin + vector.y * cos; output.x = x; return output; }; /** * Rotates the vector about a specified point by specified angle. * @method rotateAbout * @param {vector} vector * @param {number} angle * @param {vector} point * @param {vector} [output] * @return {vector} A new vector rotated about the point */ Vector.rotateAbout = function(vector, angle, point, output) { var cos = Math.cos(angle), sin = Math.sin(angle); if (!output) output = {}; var x = point.x + ((vector.x - point.x) * cos - (vector.y - point.y) * sin); output.y = point.y + ((vector.x - point.x) * sin + (vector.y - point.y) * cos); output.x = x; return output; }; /** * Normalises a vector (such that its magnitude is `1`). * @method normalise * @param {vector} vector * @return {vector} A new vector normalised */ Vector.normalise = function(vector) { var magnitude = Vector.magnitude(vector); if (magnitude === 0) return { x: 0, y: 0 }; return { x: vector.x / magnitude, y: vector.y / magnitude }; }; /** * Returns the dot-product of two vectors. * @method dot * @param {vector} vectorA * @param {vector} vectorB * @return {number} The dot product of the two vectors */ Vector.dot = function(vectorA, vectorB) { return (vectorA.x * vectorB.x) + (vectorA.y * vectorB.y); }; /** * Returns the cross-product of two vectors. * @method cross * @param {vector} vectorA * @param {vector} vectorB * @return {number} The cross product of the two vectors */ Vector.cross = function(vectorA, vectorB) { return (vectorA.x * vectorB.y) - (vectorA.y * vectorB.x); }; /** * Returns the cross-product of three vectors. * @method cross3 * @param {vector} vectorA * @param {vector} vectorB * @param {vector} vectorC * @return {number} The cross product of the three vectors */ Vector.cross3 = function(vectorA, vectorB, vectorC) { return (vectorB.x - vectorA.x) * (vectorC.y - vectorA.y) - (vectorB.y - vectorA.y) * (vectorC.x - vectorA.x); }; /** * Adds the two vectors. * @method add * @param {vector} vectorA * @param {vector} vectorB * @param {vector} [output] * @return {vector} A new vector of vectorA and vectorB added */ Vector.add = function(vectorA, vectorB, output) { if (!output) output = {}; output.x = vectorA.x + vectorB.x; output.y = vectorA.y + vectorB.y; return output; }; /** * Subtracts the two vectors. * @method sub * @param {vector} vectorA * @param {vector} vectorB * @param {vector} [output] * @return {vector} A new vector of vectorA and vectorB subtracted */ Vector.sub = function(vectorA, vectorB, output) { if (!output) output = {}; output.x = vectorA.x - vectorB.x; output.y = vectorA.y - vectorB.y; return output; }; /** * Multiplies a vector and a scalar. * @method mult * @param {vector} vector * @param {number} scalar * @return {vector} A new vector multiplied by scalar */ Vector.mult = function(vector, scalar) { return { x: vector.x * scalar, y: vector.y * scalar }; }; /** * Divides a vector and a scalar. * @method div * @param {vector} vector * @param {number} scalar * @return {vector} A new vector divided by scalar */ Vector.div = function(vector, scalar) { return { x: vector.x / scalar, y: vector.y / scalar }; }; /** * Returns the perpendicular vector. Set `negate` to true for the perpendicular in the opposite direction. * @method perp * @param {vector} vector * @param {bool} [negate=false] * @return {vector} The perpendicular vector */ Vector.perp = function(vector, negate) { negate = negate === true ? -1 : 1; return { x: negate * -vector.y, y: negate * vector.x }; }; /** * Negates both components of a vector such that it points in the opposite direction. * @method neg * @param {vector} vector * @return {vector} The negated vector */ Vector.neg = function(vector) { return { x: -vector.x, y: -vector.y }; }; /** * Returns the angle between the vector `vectorB - vectorA` and the x-axis in radians. * @method angle * @param {vector} vectorA * @param {vector} vectorB * @return {number} The angle in radians */ Vector.angle = function(vectorA, vectorB) { return Math.atan2(vectorB.y - vectorA.y, vectorB.x - vectorA.x); }; /** * Temporary vector pool (not thread-safe). * @property _temp * @type {vector[]} * @private */ Vector._temp = [ Vector.create(), Vector.create(), Vector.create(), Vector.create(), Vector.create(), Vector.create() ]; })(); /***/ }), /* 3 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Vertices` module contains methods for creating and manipulating sets of vertices. * A set of vertices is an array of `Matter.Vector` with additional indexing properties inserted by `Vertices.create`. * A `Matter.Body` maintains a set of vertices to represent the shape of the object (its convex hull). * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Vertices */ var Vertices = {}; module.exports = Vertices; var Vector = __webpack_require__(2); var Common = __webpack_require__(0); (function() { /** * Creates a new set of `Matter.Body` compatible vertices. * The `points` argument accepts an array of `Matter.Vector` points orientated around the origin `(0, 0)`, for example: * * [{ x: 0, y: 0 }, { x: 25, y: 50 }, { x: 50, y: 0 }] * * The `Vertices.create` method returns a new array of vertices, which are similar to Matter.Vector objects, * but with some additional references required for efficient collision detection routines. * * Vertices must be specified in clockwise order. * * Note that the `body` argument is not optional, a `Matter.Body` reference must be provided. * * @method create * @param {vector[]} points * @param {body} body */ Vertices.create = function(points, body) { var vertices = []; for (var i = 0; i < points.length; i++) { var point = points[i], vertex = { x: point.x, y: point.y, index: i, body: body, isInternal: false }; vertices.push(vertex); } return vertices; }; /** * Parses a string containing ordered x y pairs separated by spaces (and optionally commas), * into a `Matter.Vertices` object for the given `Matter.Body`. * For parsing SVG paths, see `Svg.pathToVertices`. * @method fromPath * @param {string} path * @param {body} body * @return {vertices} vertices */ Vertices.fromPath = function(path, body) { var pathPattern = /L?\s*([-\d.e]+)[\s,]*([-\d.e]+)*/ig, points = []; path.replace(pathPattern, function(match, x, y) { points.push({ x: parseFloat(x), y: parseFloat(y) }); }); return Vertices.create(points, body); }; /** * Returns the centre (centroid) of the set of vertices. * @method centre * @param {vertices} vertices * @return {vector} The centre point */ Vertices.centre = function(vertices) { var area = Vertices.area(vertices, true), centre = { x: 0, y: 0 }, cross, temp, j; for (var i = 0; i < vertices.length; i++) { j = (i + 1) % vertices.length; cross = Vector.cross(vertices[i], vertices[j]); temp = Vector.mult(Vector.add(vertices[i], vertices[j]), cross); centre = Vector.add(centre, temp); } return Vector.div(centre, 6 * area); }; /** * Returns the average (mean) of the set of vertices. * @method mean * @param {vertices} vertices * @return {vector} The average point */ Vertices.mean = function(vertices) { var average = { x: 0, y: 0 }; for (var i = 0; i < vertices.length; i++) { average.x += vertices[i].x; average.y += vertices[i].y; } return Vector.div(average, vertices.length); }; /** * Returns the area of the set of vertices. * @method area * @param {vertices} vertices * @param {bool} signed * @return {number} The area */ Vertices.area = function(vertices, signed) { var area = 0, j = vertices.length - 1; for (var i = 0; i < vertices.length; i++) { area += (vertices[j].x - vertices[i].x) * (vertices[j].y + vertices[i].y); j = i; } if (signed) return area / 2; return Math.abs(area) / 2; }; /** * Returns the moment of inertia (second moment of area) of the set of vertices given the total mass. * @method inertia * @param {vertices} vertices * @param {number} mass * @return {number} The polygon's moment of inertia */ Vertices.inertia = function(vertices, mass) { var numerator = 0, denominator = 0, v = vertices, cross, j; // find the polygon's moment of inertia, using second moment of area // from equations at http://www.physicsforums.com/showthread.php?t=25293 for (var n = 0; n < v.length; n++) { j = (n + 1) % v.length; cross = Math.abs(Vector.cross(v[j], v[n])); numerator += cross * (Vector.dot(v[j], v[j]) + Vector.dot(v[j], v[n]) + Vector.dot(v[n], v[n])); denominator += cross; } return (mass / 6) * (numerator / denominator); }; /** * Translates the set of vertices in-place. * @method translate * @param {vertices} vertices * @param {vector} vector * @param {number} scalar */ Vertices.translate = function(vertices, vector, scalar) { scalar = typeof scalar !== 'undefined' ? scalar : 1; var verticesLength = vertices.length, translateX = vector.x * scalar, translateY = vector.y * scalar, i; for (i = 0; i < verticesLength; i++) { vertices[i].x += translateX; vertices[i].y += translateY; } return vertices; }; /** * Rotates the set of vertices in-place. * @method rotate * @param {vertices} vertices * @param {number} angle * @param {vector} point */ Vertices.rotate = function(vertices, angle, point) { if (angle === 0) return; var cos = Math.cos(angle), sin = Math.sin(angle), pointX = point.x, pointY = point.y, verticesLength = vertices.length, vertex, dx, dy, i; for (i = 0; i < verticesLength; i++) { vertex = vertices[i]; dx = vertex.x - pointX; dy = vertex.y - pointY; vertex.x = pointX + (dx * cos - dy * sin); vertex.y = pointY + (dx * sin + dy * cos); } return vertices; }; /** * Returns `true` if the `point` is inside the set of `vertices`. * @method contains * @param {vertices} vertices * @param {vector} point * @return {boolean} True if the vertices contains point, otherwise false */ Vertices.contains = function(vertices, point) { var pointX = point.x, pointY = point.y, verticesLength = vertices.length, vertex = vertices[verticesLength - 1], nextVertex; for (var i = 0; i < verticesLength; i++) { nextVertex = vertices[i]; if ((pointX - vertex.x) * (nextVertex.y - vertex.y) + (pointY - vertex.y) * (vertex.x - nextVertex.x) > 0) { return false; } vertex = nextVertex; } return true; }; /** * Scales the vertices from a point (default is centre) in-place. * @method scale * @param {vertices} vertices * @param {number} scaleX * @param {number} scaleY * @param {vector} point */ Vertices.scale = function(vertices, scaleX, scaleY, point) { if (scaleX === 1 && scaleY === 1) return vertices; point = point || Vertices.centre(vertices); var vertex, delta; for (var i = 0; i < vertices.length; i++) { vertex = vertices[i]; delta = Vector.sub(vertex, point); vertices[i].x = point.x + delta.x * scaleX; vertices[i].y = point.y + delta.y * scaleY; } return vertices; }; /** * Chamfers a set of vertices by giving them rounded corners, returns a new set of vertices. * The radius parameter is a single number or an array to specify the radius for each vertex. * @method chamfer * @param {vertices} vertices * @param {number[]} radius * @param {number} quality * @param {number} qualityMin * @param {number} qualityMax */ Vertices.chamfer = function(vertices, radius, quality, qualityMin, qualityMax) { if (typeof radius === 'number') { radius = [radius]; } else { radius = radius || [8]; } // quality defaults to -1, which is auto quality = (typeof quality !== 'undefined') ? quality : -1; qualityMin = qualityMin || 2; qualityMax = qualityMax || 14; var newVertices = []; for (var i = 0; i < vertices.length; i++) { var prevVertex = vertices[i - 1 >= 0 ? i - 1 : vertices.length - 1], vertex = vertices[i], nextVertex = vertices[(i + 1) % vertices.length], currentRadius = radius[i < radius.length ? i : radius.length - 1]; if (currentRadius === 0) { newVertices.push(vertex); continue; } var prevNormal = Vector.normalise({ x: vertex.y - prevVertex.y, y: prevVertex.x - vertex.x }); var nextNormal = Vector.normalise({ x: nextVertex.y - vertex.y, y: vertex.x - nextVertex.x }); var diagonalRadius = Math.sqrt(2 * Math.pow(currentRadius, 2)), radiusVector = Vector.mult(Common.clone(prevNormal), currentRadius), midNormal = Vector.normalise(Vector.mult(Vector.add(prevNormal, nextNormal), 0.5)), scaledVertex = Vector.sub(vertex, Vector.mult(midNormal, diagonalRadius)); var precision = quality; if (quality === -1) { // automatically decide precision precision = Math.pow(currentRadius, 0.32) * 1.75; } precision = Common.clamp(precision, qualityMin, qualityMax); // use an even value for precision, more likely to reduce axes by using symmetry if (precision % 2 === 1) precision += 1; var alpha = Math.acos(Vector.dot(prevNormal, nextNormal)), theta = alpha / precision; for (var j = 0; j < precision; j++) { newVertices.push(Vector.add(Vector.rotate(radiusVector, theta * j), scaledVertex)); } } return newVertices; }; /** * Sorts the input vertices into clockwise order in place. * @method clockwiseSort * @param {vertices} vertices * @return {vertices} vertices */ Vertices.clockwiseSort = function(vertices) { var centre = Vertices.mean(vertices); vertices.sort(function(vertexA, vertexB) { return Vector.angle(centre, vertexA) - Vector.angle(centre, vertexB); }); return vertices; }; /** * Returns true if the vertices form a convex shape (vertices must be in clockwise order). * @method isConvex * @param {vertices} vertices * @return {bool} `true` if the `vertices` are convex, `false` if not (or `null` if not computable). */ Vertices.isConvex = function(vertices) { // http://paulbourke.net/geometry/polygonmesh/ // Copyright (c) Paul Bourke (use permitted) var flag = 0, n = vertices.length, i, j, k, z; if (n < 3) return null; for (i = 0; i < n; i++) { j = (i + 1) % n; k = (i + 2) % n; z = (vertices[j].x - vertices[i].x) * (vertices[k].y - vertices[j].y); z -= (vertices[j].y - vertices[i].y) * (vertices[k].x - vertices[j].x); if (z < 0) { flag |= 1; } else if (z > 0) { flag |= 2; } if (flag === 3) { return false; } } if (flag !== 0){ return true; } else { return null; } }; /** * Returns the convex hull of the input vertices as a new array of points. * @method hull * @param {vertices} vertices * @return [vertex] vertices */ Vertices.hull = function(vertices) { // http://geomalgorithms.com/a10-_hull-1.html var upper = [], lower = [], vertex, i; // sort vertices on x-axis (y-axis for ties) vertices = vertices.slice(0); vertices.sort(function(vertexA, vertexB) { var dx = vertexA.x - vertexB.x; return dx !== 0 ? dx : vertexA.y - vertexB.y; }); // build lower hull for (i = 0; i < vertices.length; i += 1) { vertex = vertices[i]; while (lower.length >= 2 && Vector.cross3(lower[lower.length - 2], lower[lower.length - 1], vertex) <= 0) { lower.pop(); } lower.push(vertex); } // build upper hull for (i = vertices.length - 1; i >= 0; i -= 1) { vertex = vertices[i]; while (upper.length >= 2 && Vector.cross3(upper[upper.length - 2], upper[upper.length - 1], vertex) <= 0) { upper.pop(); } upper.push(vertex); } // concatenation of the lower and upper hulls gives the convex hull // omit last points because they are repeated at the beginning of the other list upper.pop(); lower.pop(); return upper.concat(lower); }; })(); /***/ }), /* 4 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Body` module contains methods for creating and manipulating rigid bodies. * For creating bodies with common configurations such as rectangles, circles and other polygons see the module `Matter.Bodies`. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * @class Body */ var Body = {}; module.exports = Body; var Vertices = __webpack_require__(3); var Vector = __webpack_require__(2); var Sleeping = __webpack_require__(7); var Common = __webpack_require__(0); var Bounds = __webpack_require__(1); var Axes = __webpack_require__(11); (function() { Body._timeCorrection = true; Body._inertiaScale = 4; Body._nextCollidingGroupId = 1; Body._nextNonCollidingGroupId = -1; Body._nextCategory = 0x0001; Body._baseDelta = 1000 / 60; /** * Creates a new rigid body model. The options parameter is an object that specifies any properties you wish to override the defaults. * All properties have default values, and many are pre-calculated automatically based on other properties. * Vertices must be specified in clockwise order. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {} options * @return {body} body */ Body.create = function(options) { var defaults = { id: Common.nextId(), type: 'body', label: 'Body', parts: [], plugin: {}, angle: 0, vertices: Vertices.fromPath('L 0 0 L 40 0 L 40 40 L 0 40'), position: { x: 0, y: 0 }, force: { x: 0, y: 0 }, torque: 0, positionImpulse: { x: 0, y: 0 }, constraintImpulse: { x: 0, y: 0, angle: 0 }, totalContacts: 0, speed: 0, angularSpeed: 0, velocity: { x: 0, y: 0 }, angularVelocity: 0, isSensor: false, isStatic: false, isSleeping: false, motion: 0, sleepThreshold: 60, density: 0.001, restitution: 0, friction: 0.1, frictionStatic: 0.5, frictionAir: 0.01, collisionFilter: { category: 0x0001, mask: 0xFFFFFFFF, group: 0 }, slop: 0.05, timeScale: 1, render: { visible: true, opacity: 1, strokeStyle: null, fillStyle: null, lineWidth: null, sprite: { xScale: 1, yScale: 1, xOffset: 0, yOffset: 0 } }, events: null, bounds: null, chamfer: null, circleRadius: 0, positionPrev: null, anglePrev: 0, parent: null, axes: null, area: 0, mass: 0, inertia: 0, deltaTime: 1000 / 60, _original: null }; var body = Common.extend(defaults, options); _initProperties(body, options); return body; }; /** * Returns the next unique group index for which bodies will collide. * If `isNonColliding` is `true`, returns the next unique group index for which bodies will _not_ collide. * See `body.collisionFilter` for more information. * @method nextGroup * @param {bool} [isNonColliding=false] * @return {Number} Unique group index */ Body.nextGroup = function(isNonColliding) { if (isNonColliding) return Body._nextNonCollidingGroupId--; return Body._nextCollidingGroupId++; }; /** * Returns the next unique category bitfield (starting after the initial default category `0x0001`). * There are 32 available. See `body.collisionFilter` for more information. * @method nextCategory * @return {Number} Unique category bitfield */ Body.nextCategory = function() { Body._nextCategory = Body._nextCategory << 1; return Body._nextCategory; }; /** * Initialises body properties. * @method _initProperties * @private * @param {body} body * @param {} [options] */ var _initProperties = function(body, options) { options = options || {}; // init required properties (order is important) Body.set(body, { bounds: body.bounds || Bounds.create(body.vertices), positionPrev: body.positionPrev || Vector.clone(body.position), anglePrev: body.anglePrev || body.angle, vertices: body.vertices, parts: body.parts || [body], isStatic: body.isStatic, isSleeping: body.isSleeping, parent: body.parent || body }); Vertices.rotate(body.vertices, body.angle, body.position); Axes.rotate(body.axes, body.angle); Bounds.update(body.bounds, body.vertices, body.velocity); // allow options to override the automatically calculated properties Body.set(body, { axes: options.axes || body.axes, area: options.area || body.area, mass: options.mass || body.mass, inertia: options.inertia || body.inertia }); // render properties var defaultFillStyle = (body.isStatic ? '#14151f' : Common.choose(['#f19648', '#f5d259', '#f55a3c', '#063e7b', '#ececd1'])), defaultStrokeStyle = body.isStatic ? '#555' : '#ccc', defaultLineWidth = body.isStatic && body.render.fillStyle === null ? 1 : 0; body.render.fillStyle = body.render.fillStyle || defaultFillStyle; body.render.strokeStyle = body.render.strokeStyle || defaultStrokeStyle; body.render.lineWidth = body.render.lineWidth || defaultLineWidth; body.render.sprite.xOffset += -(body.bounds.min.x - body.position.x) / (body.bounds.max.x - body.bounds.min.x); body.render.sprite.yOffset += -(body.bounds.min.y - body.position.y) / (body.bounds.max.y - body.bounds.min.y); }; /** * Given a property and a value (or map of), sets the property(s) on the body, using the appropriate setter functions if they exist. * Prefer to use the actual setter functions in performance critical situations. * @method set * @param {body} body * @param {} settings A property name (or map of properties and values) to set on the body. * @param {} value The value to set if `settings` is a single property name. */ Body.set = function(body, settings, value) { var property; if (typeof settings === 'string') { property = settings; settings = {}; settings[property] = value; } for (property in settings) { if (!Object.prototype.hasOwnProperty.call(settings, property)) continue; value = settings[property]; switch (property) { case 'isStatic': Body.setStatic(body, value); break; case 'isSleeping': Sleeping.set(body, value); break; case 'mass': Body.setMass(body, value); break; case 'density': Body.setDensity(body, value); break; case 'inertia': Body.setInertia(body, value); break; case 'vertices': Body.setVertices(body, value); break; case 'position': Body.setPosition(body, value); break; case 'angle': Body.setAngle(body, value); break; case 'velocity': Body.setVelocity(body, value); break; case 'angularVelocity': Body.setAngularVelocity(body, value); break; case 'speed': Body.setSpeed(body, value); break; case 'angularSpeed': Body.setAngularSpeed(body, value); break; case 'parts': Body.setParts(body, value); break; case 'centre': Body.setCentre(body, value); break; default: body[property] = value; } } }; /** * Sets the body as static, including isStatic flag and setting mass and inertia to Infinity. * @method setStatic * @param {body} body * @param {bool} isStatic */ Body.setStatic = function(body, isStatic) { for (var i = 0; i < body.parts.length; i++) { var part = body.parts[i]; if (isStatic) { if (!part.isStatic) { part._original = { restitution: part.restitution, friction: part.friction, mass: part.mass, inertia: part.inertia, density: part.density, inverseMass: part.inverseMass, inverseInertia: part.inverseInertia }; } part.restitution = 0; part.friction = 1; part.mass = part.inertia = part.density = Infinity; part.inverseMass = part.inverseInertia = 0; part.positionPrev.x = part.position.x; part.positionPrev.y = part.position.y; part.anglePrev = part.angle; part.angularVelocity = 0; part.speed = 0; part.angularSpeed = 0; part.motion = 0; } else if (part._original) { part.restitution = part._original.restitution; part.friction = part._original.friction; part.mass = part._original.mass; part.inertia = part._original.inertia; part.density = part._original.density; part.inverseMass = part._original.inverseMass; part.inverseInertia = part._original.inverseInertia; part._original = null; } part.isStatic = isStatic; } }; /** * Sets the mass of the body. Inverse mass, density and inertia are automatically updated to reflect the change. * @method setMass * @param {body} body * @param {number} mass */ Body.setMass = function(body, mass) { var moment = body.inertia / (body.mass / 6); body.inertia = moment * (mass / 6); body.inverseInertia = 1 / body.inertia; body.mass = mass; body.inverseMass = 1 / body.mass; body.density = body.mass / body.area; }; /** * Sets the density of the body. Mass and inertia are automatically updated to reflect the change. * @method setDensity * @param {body} body * @param {number} density */ Body.setDensity = function(body, density) { Body.setMass(body, density * body.area); body.density = density; }; /** * Sets the moment of inertia of the body. This is the second moment of area in two dimensions. * Inverse inertia is automatically updated to reflect the change. Mass is not changed. * @method setInertia * @param {body} body * @param {number} inertia */ Body.setInertia = function(body, inertia) { body.inertia = inertia; body.inverseInertia = 1 / body.inertia; }; /** * Sets the body's vertices and updates body properties accordingly, including inertia, area and mass (with respect to `body.density`). * Vertices will be automatically transformed to be orientated around their centre of mass as the origin. * They are then automatically translated to world space based on `body.position`. * * The `vertices` argument should be passed as an array of `Matter.Vector` points (or a `Matter.Vertices` array). * Vertices must form a convex hull. Concave vertices must be decomposed into convex parts. * * @method setVertices * @param {body} body * @param {vector[]} vertices */ Body.setVertices = function(body, vertices) { // change vertices if (vertices[0].body === body) { body.vertices = vertices; } else { body.vertices = Vertices.create(vertices, body); } // update properties body.axes = Axes.fromVertices(body.vertices); body.area = Vertices.area(body.vertices); Body.setMass(body, body.density * body.area); // orient vertices around the centre of mass at origin (0, 0) var centre = Vertices.centre(body.vertices); Vertices.translate(body.vertices, centre, -1); // update inertia while vertices are at origin (0, 0) Body.setInertia(body, Body._inertiaScale * Vertices.inertia(body.vertices, body.mass)); // update geometry Vertices.translate(body.vertices, body.position); Bounds.update(body.bounds, body.vertices, body.velocity); }; /** * Sets the parts of the `body`. * * See `body.parts` for details and requirements on how parts are used. * * See Bodies.fromVertices for a related utility. * * This function updates `body` mass, inertia and centroid based on the parts geometry. * Sets each `part.parent` to be this `body`. * * The convex hull is computed and set on this `body` (unless `autoHull` is `false`). * Automatically ensures that the first part in `body.parts` is the `body`. * @method setParts * @param {body} body * @param {body[]} parts * @param {bool} [autoHull=true] */ Body.setParts = function(body, parts, autoHull) { var i; // add all the parts, ensuring that the first part is always the parent body parts = parts.slice(0); body.parts.length = 0; body.parts.push(body); body.parent = body; for (i = 0; i < parts.length; i++) { var part = parts[i]; if (part !== body) { part.parent = body; body.parts.push(part); } } if (body.parts.length === 1) return; autoHull = typeof autoHull !== 'undefined' ? autoHull : true; // find the convex hull of all parts to set on the parent body if (autoHull) { var vertices = []; for (i = 0; i < parts.length; i++) { vertices = vertices.concat(parts[i].vertices); } Vertices.clockwiseSort(vertices); var hull = Vertices.hull(vertices), hullCentre = Vertices.centre(hull); Body.setVertices(body, hull); Vertices.translate(body.vertices, hullCentre); } // sum the properties of all compound parts of the parent body var total = Body._totalProperties(body); body.area = total.area; body.parent = body; body.position.x = total.centre.x; body.position.y = total.centre.y; body.positionPrev.x = total.centre.x; body.positionPrev.y = total.centre.y; Body.setMass(body, total.mass); Body.setInertia(body, total.inertia); Body.setPosition(body, total.centre); }; /** * Set the centre of mass of the body. * The `centre` is a vector in world-space unless `relative` is set, in which case it is a translation. * The centre of mass is the point the body rotates about and can be used to simulate non-uniform density. * This is equal to moving `body.position` but not the `body.vertices`. * Invalid if the `centre` falls outside the body's convex hull. * @method setCentre * @param {body} body * @param {vector} centre * @param {bool} relative */ Body.setCentre = function(body, centre, relative) { if (!relative) { body.positionPrev.x = centre.x - (body.position.x - body.positionPrev.x); body.positionPrev.y = centre.y - (body.position.y - body.positionPrev.y); body.position.x = centre.x; body.position.y = centre.y; } else { body.positionPrev.x += centre.x; body.positionPrev.y += centre.y; body.position.x += centre.x; body.position.y += centre.y; } }; /** * Sets the position of the body. By default velocity is unchanged. * If `updateVelocity` is `true` then velocity is inferred from the change in position. * @method setPosition * @param {body} body * @param {vector} position * @param {boolean} [updateVelocity=false] */ Body.setPosition = function(body, position, updateVelocity) { var delta = Vector.sub(position, body.position); if (updateVelocity) { body.positionPrev.x = body.position.x; body.positionPrev.y = body.position.y; body.velocity.x = delta.x; body.velocity.y = delta.y; body.speed = Vector.magnitude(delta); } else { body.positionPrev.x += delta.x; body.positionPrev.y += delta.y; } for (var i = 0; i < body.parts.length; i++) { var part = body.parts[i]; part.position.x += delta.x; part.position.y += delta.y; Vertices.translate(part.vertices, delta); Bounds.update(part.bounds, part.vertices, body.velocity); } }; /** * Sets the angle of the body. By default angular velocity is unchanged. * If `updateVelocity` is `true` then angular velocity is inferred from the change in angle. * @method setAngle * @param {body} body * @param {number} angle * @param {boolean} [updateVelocity=false] */ Body.setAngle = function(body, angle, updateVelocity) { var delta = angle - body.angle; if (updateVelocity) { body.anglePrev = body.angle; body.angularVelocity = delta; body.angularSpeed = Math.abs(delta); } else { body.anglePrev += delta; } for (var i = 0; i < body.parts.length; i++) { var part = body.parts[i]; part.angle += delta; Vertices.rotate(part.vertices, delta, body.position); Axes.rotate(part.axes, delta); Bounds.update(part.bounds, part.vertices, body.velocity); if (i > 0) { Vector.rotateAbout(part.position, delta, body.position, part.position); } } }; /** * Sets the current linear velocity of the body. * Affects body speed. * @method setVelocity * @param {body} body * @param {vector} velocity */ Body.setVelocity = function(body, velocity) { var timeScale = body.deltaTime / Body._baseDelta; body.positionPrev.x = body.position.x - velocity.x * timeScale; body.positionPrev.y = body.position.y - velocity.y * timeScale; body.velocity.x = (body.position.x - body.positionPrev.x) / timeScale; body.velocity.y = (body.position.y - body.positionPrev.y) / timeScale; body.speed = Vector.magnitude(body.velocity); }; /** * Gets the current linear velocity of the body. * @method getVelocity * @param {body} body * @return {vector} velocity */ Body.getVelocity = function(body) { var timeScale = Body._baseDelta / body.deltaTime; return { x: (body.position.x - body.positionPrev.x) * timeScale, y: (body.position.y - body.positionPrev.y) * timeScale }; }; /** * Gets the current linear speed of the body. * Equivalent to the magnitude of its velocity. * @method getSpeed * @param {body} body * @return {number} speed */ Body.getSpeed = function(body) { return Vector.magnitude(Body.getVelocity(body)); }; /** * Sets the current linear speed of the body. * Direction is maintained. Affects body velocity. * @method setSpeed * @param {body} body * @param {number} speed */ Body.setSpeed = function(body, speed) { Body.setVelocity(body, Vector.mult(Vector.normalise(Body.getVelocity(body)), speed)); }; /** * Sets the current rotational velocity of the body. * Affects body angular speed. * @method setAngularVelocity * @param {body} body * @param {number} velocity */ Body.setAngularVelocity = function(body, velocity) { var timeScale = body.deltaTime / Body._baseDelta; body.anglePrev = body.angle - velocity * timeScale; body.angularVelocity = (body.angle - body.anglePrev) / timeScale; body.angularSpeed = Math.abs(body.angularVelocity); }; /** * Gets the current rotational velocity of the body. * @method getAngularVelocity * @param {body} body * @return {number} angular velocity */ Body.getAngularVelocity = function(body) { return (body.angle - body.anglePrev) * Body._baseDelta / body.deltaTime; }; /** * Gets the current rotational speed of the body. * Equivalent to the magnitude of its angular velocity. * @method getAngularSpeed * @param {body} body * @return {number} angular speed */ Body.getAngularSpeed = function(body) { return Math.abs(Body.getAngularVelocity(body)); }; /** * Sets the current rotational speed of the body. * Direction is maintained. Affects body angular velocity. * @method setAngularSpeed * @param {body} body * @param {number} speed */ Body.setAngularSpeed = function(body, speed) { Body.setAngularVelocity(body, Common.sign(Body.getAngularVelocity(body)) * speed); }; /** * Moves a body by a given vector relative to its current position. By default velocity is unchanged. * If `updateVelocity` is `true` then velocity is inferred from the change in position. * @method translate * @param {body} body * @param {vector} translation * @param {boolean} [updateVelocity=false] */ Body.translate = function(body, translation, updateVelocity) { Body.setPosition(body, Vector.add(body.position, translation), updateVelocity); }; /** * Rotates a body by a given angle relative to its current angle. By default angular velocity is unchanged. * If `updateVelocity` is `true` then angular velocity is inferred from the change in angle. * @method rotate * @param {body} body * @param {number} rotation * @param {vector} [point] * @param {boolean} [updateVelocity=false] */ Body.rotate = function(body, rotation, point, updateVelocity) { if (!point) { Body.setAngle(body, body.angle + rotation, updateVelocity); } else { var cos = Math.cos(rotation), sin = Math.sin(rotation), dx = body.position.x - point.x, dy = body.position.y - point.y; Body.setPosition(body, { x: point.x + (dx * cos - dy * sin), y: point.y + (dx * sin + dy * cos) }, updateVelocity); Body.setAngle(body, body.angle + rotation, updateVelocity); } }; /** * Scales the body, including updating physical properties (mass, area, axes, inertia), from a world-space point (default is body centre). * @method scale * @param {body} body * @param {number} scaleX * @param {number} scaleY * @param {vector} [point] */ Body.scale = function(body, scaleX, scaleY, point) { var totalArea = 0, totalInertia = 0; point = point || body.position; for (var i = 0; i < body.parts.length; i++) { var part = body.parts[i]; // scale vertices Vertices.scale(part.vertices, scaleX, scaleY, point); // update properties part.axes = Axes.fromVertices(part.vertices); part.area = Vertices.area(part.vertices); Body.setMass(part, body.density * part.area); // update inertia (requires vertices to be at origin) Vertices.translate(part.vertices, { x: -part.position.x, y: -part.position.y }); Body.setInertia(part, Body._inertiaScale * Vertices.inertia(part.vertices, part.mass)); Vertices.translate(part.vertices, { x: part.position.x, y: part.position.y }); if (i > 0) { totalArea += part.area; totalInertia += part.inertia; } // scale position part.position.x = point.x + (part.position.x - point.x) * scaleX; part.position.y = point.y + (part.position.y - point.y) * scaleY; // update bounds Bounds.update(part.bounds, part.vertices, body.velocity); } // handle parent body if (body.parts.length > 1) { body.area = totalArea; if (!body.isStatic) { Body.setMass(body, body.density * totalArea); Body.setInertia(body, totalInertia); } } // handle circles if (body.circleRadius) { if (scaleX === scaleY) { body.circleRadius *= scaleX; } else { // body is no longer a circle body.circleRadius = null; } } }; /** * Performs an update by integrating the equations of motion on the `body`. * This is applied every update by `Matter.Engine` automatically. * @method update * @param {body} body * @param {number} [deltaTime=16.666] */ Body.update = function(body, deltaTime) { deltaTime = (typeof deltaTime !== 'undefined' ? deltaTime : (1000 / 60)) * body.timeScale; var deltaTimeSquared = deltaTime * deltaTime, correction = Body._timeCorrection ? deltaTime / (body.deltaTime || deltaTime) : 1; // from the previous step var frictionAir = 1 - body.frictionAir * (deltaTime / Common._baseDelta), velocityPrevX = (body.position.x - body.positionPrev.x) * correction, velocityPrevY = (body.position.y - body.positionPrev.y) * correction; // update velocity with Verlet integration body.velocity.x = (velocityPrevX * frictionAir) + (body.force.x / body.mass) * deltaTimeSquared; body.velocity.y = (velocityPrevY * frictionAir) + (body.force.y / body.mass) * deltaTimeSquared; body.positionPrev.x = body.position.x; body.positionPrev.y = body.position.y; body.position.x += body.velocity.x; body.position.y += body.velocity.y; body.deltaTime = deltaTime; // update angular velocity with Verlet integration body.angularVelocity = ((body.angle - body.anglePrev) * frictionAir * correction) + (body.torque / body.inertia) * deltaTimeSquared; body.anglePrev = body.angle; body.angle += body.angularVelocity; // transform the body geometry for (var i = 0; i < body.parts.length; i++) { var part = body.parts[i]; Vertices.translate(part.vertices, body.velocity); if (i > 0) { part.position.x += body.velocity.x; part.position.y += body.velocity.y; } if (body.angularVelocity !== 0) { Vertices.rotate(part.vertices, body.angularVelocity, body.position); Axes.rotate(part.axes, body.angularVelocity); if (i > 0) { Vector.rotateAbout(part.position, body.angularVelocity, body.position, part.position); } } Bounds.update(part.bounds, part.vertices, body.velocity); } }; /** * Updates properties `body.velocity`, `body.speed`, `body.angularVelocity` and `body.angularSpeed` which are normalised in relation to `Body._baseDelta`. * @method updateVelocities * @param {body} body */ Body.updateVelocities = function(body) { var timeScale = Body._baseDelta / body.deltaTime, bodyVelocity = body.velocity; bodyVelocity.x = (body.position.x - body.positionPrev.x) * timeScale; bodyVelocity.y = (body.position.y - body.positionPrev.y) * timeScale; body.speed = Math.sqrt((bodyVelocity.x * bodyVelocity.x) + (bodyVelocity.y * bodyVelocity.y)); body.angularVelocity = (body.angle - body.anglePrev) * timeScale; body.angularSpeed = Math.abs(body.angularVelocity); }; /** * Applies the `force` to the `body` from the force origin `position` in world-space, over a single timestep, including applying any resulting angular torque. * * Forces are useful for effects like gravity, wind or rocket thrust, but can be difficult in practice when precise control is needed. In these cases see `Body.setVelocity` and `Body.setPosition` as an alternative. * * The force from this function is only applied once for the duration of a single timestep, in other words the duration depends directly on the current engine update `delta` and the rate of calls to this function. * * Therefore to account for time, you should apply the force constantly over as many engine updates as equivalent to the intended duration. * * If all or part of the force duration is some fraction of a timestep, first multiply the force by `duration / timestep`. * * The force origin `position` in world-space must also be specified. Passing `body.position` will result in zero angular effect as the force origin would be at the centre of mass. * * The `body` will take time to accelerate under a force, the resulting effect depends on duration of the force, the body mass and other forces on the body including friction combined. * @method applyForce * @param {body} body * @param {vector} position The force origin in world-space. Pass `body.position` to avoid angular torque. * @param {vector} force */ Body.applyForce = function(body, position, force) { var offset = { x: position.x - body.position.x, y: position.y - body.position.y }; body.force.x += force.x; body.force.y += force.y; body.torque += offset.x * force.y - offset.y * force.x; }; /** * Returns the sums of the properties of all compound parts of the parent body. * @method _totalProperties * @private * @param {body} body * @return {} */ Body._totalProperties = function(body) { // from equations at: // https://ecourses.ou.edu/cgi-bin/ebook.cgi?doc=&topic=st&chap_sec=07.2&page=theory // http://output.to/sideway/default.asp?qno=121100087 var properties = { mass: 0, area: 0, inertia: 0, centre: { x: 0, y: 0 } }; // sum the properties of all compound parts of the parent body for (var i = body.parts.length === 1 ? 0 : 1; i < body.parts.length; i++) { var part = body.parts[i], mass = part.mass !== Infinity ? part.mass : 1; properties.mass += mass; properties.area += part.area; properties.inertia += part.inertia; properties.centre = Vector.add(properties.centre, Vector.mult(part.position, mass)); } properties.centre = Vector.div(properties.centre, properties.mass); return properties; }; /* * * Events Documentation * */ /** * Fired when a body starts sleeping (where `this` is the body). * * @event sleepStart * @this {body} The body that has started sleeping * @param {} event An event object * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when a body ends sleeping (where `this` is the body). * * @event sleepEnd * @this {body} The body that has ended sleeping * @param {} event An event object * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /* * * Properties Documentation * */ /** * An integer `Number` uniquely identifying number generated in `Body.create` by `Common.nextId`. * * @property id * @type number */ /** * _Read only_. Set by `Body.create`. * * A `String` denoting the type of object. * * @readOnly * @property type * @type string * @default "body" */ /** * An arbitrary `String` name to help the user identify and manage bodies. * * @property label * @type string * @default "Body" */ /** * _Read only_. Use `Body.setParts` to set. * * See `Bodies.fromVertices` for a related utility. * * An array of bodies (the 'parts') that make up this body (the 'parent'). The first body in this array must always be a self-reference to this `body`. * * The parts are fixed together and therefore perform as a single unified rigid body. * * Parts in relation to each other are allowed to overlap, as well as form gaps or holes, so can be used to create complex concave bodies unlike when using a single part. * * Use properties and functions on the parent `body` rather than on parts. * * Outside of their geometry, most properties on parts are not considered or updated. * As such 'per-part' material properties among others are not currently considered. * * Parts should be created specifically for their parent body. * Parts should not be shared or reused between bodies, only one parent is supported. * Parts should not have their own parts, they are not handled recursively. * Parts should not be added to the world directly or any other composite. * Parts own vertices must be convex and in clockwise order. * * A body with more than one part is sometimes referred to as a 'compound' body. * * Use `Body.setParts` when setting parts to ensure correct updates of all properties. * * @readOnly * @property parts * @type body[] */ /** * An object reserved for storing plugin-specific properties. * * @property plugin * @type {} */ /** * _Read only_. Updated by `Body.setParts`. * * A reference to the body that this is a part of. See `body.parts`. * This is a self reference if the body is not a part of another body. * * @readOnly * @property parent * @type body */ /** * A `Number` specifying the angle of the body, in radians. * * @property angle * @type number * @default 0 */ /** * _Read only_. Use `Body.setVertices` or `Body.setParts` to set. See also `Bodies.fromVertices`. * * An array of `Vector` objects that specify the convex hull of the rigid body. * These should be provided about the origin `(0, 0)`. E.g. * * `[{ x: 0, y: 0 }, { x: 25, y: 50 }, { x: 50, y: 0 }]` * * Vertices must always be convex, in clockwise order and must not contain any duplicate points. * * Concave vertices should be decomposed into convex `parts`, see `Bodies.fromVertices` and `Body.setParts`. * * When set the vertices are translated such that `body.position` is at the centre of mass. * Many other body properties are automatically calculated from these vertices when set including `density`, `area` and `inertia`. * * The module `Matter.Vertices` contains useful methods for working with vertices. * * @readOnly * @property vertices * @type vector[] */ /** * _Read only_. Use `Body.setPosition` to set. * * A `Vector` that specifies the current world-space position of the body. * * @readOnly * @property position * @type vector * @default { x: 0, y: 0 } */ /** * A `Vector` that accumulates the total force applied to the body for a single update. * Force is zeroed after every `Engine.update`, so constant forces should be applied for every update they are needed. See also `Body.applyForce`. * * @property force * @type vector * @default { x: 0, y: 0 } */ /** * A `Number` that accumulates the total torque (turning force) applied to the body for a single update. See also `Body.applyForce`. * Torque is zeroed after every `Engine.update`, so constant torques should be applied for every update they are needed. * * Torques result in angular acceleration on every update, which depends on body inertia and the engine update delta. * * @property torque * @type number * @default 0 */ /** * _Read only_. Use `Body.setSpeed` to set. * * See `Body.getSpeed` for details. * * Equivalent to the magnitude of `body.velocity` (always positive). * * @readOnly * @property speed * @type number * @default 0 */ /** * _Read only_. Use `Body.setVelocity` to set. * * See `Body.getVelocity` for details. * * Equivalent to the magnitude of `body.angularVelocity` (always positive). * * @readOnly * @property velocity * @type vector * @default { x: 0, y: 0 } */ /** * _Read only_. Use `Body.setAngularSpeed` to set. * * See `Body.getAngularSpeed` for details. * * * @readOnly * @property angularSpeed * @type number * @default 0 */ /** * _Read only_. Use `Body.setAngularVelocity` to set. * * See `Body.getAngularVelocity` for details. * * * @readOnly * @property angularVelocity * @type number * @default 0 */ /** * _Read only_. Use `Body.setStatic` to set. * * A flag that indicates whether a body is considered static. A static body can never change position or angle and is completely fixed. * * @readOnly * @property isStatic * @type boolean * @default false */ /** * A flag that indicates whether a body is a sensor. Sensor triggers collision events, but doesn't react with colliding body physically. * * @property isSensor * @type boolean * @default false */ /** * _Read only_. Use `Sleeping.set` to set. * * A flag that indicates whether the body is considered sleeping. A sleeping body acts similar to a static body, except it is only temporary and can be awoken. * * @readOnly * @property isSleeping * @type boolean * @default false */ /** * _Read only_. Calculated during engine update only when sleeping is enabled. * * A `Number` that loosely measures the amount of movement a body currently has. * * Derived from `body.speed^2 + body.angularSpeed^2`. See `Sleeping.update`. * * @readOnly * @property motion * @type number * @default 0 */ /** * A `Number` that defines the length of time during which this body must have near-zero velocity before it is set as sleeping by the `Matter.Sleeping` module (if sleeping is enabled by the engine). * * @property sleepThreshold * @type number * @default 60 */ /** * _Read only_. Use `Body.setDensity` to set. * * A `Number` that defines the density of the body (mass per unit area). * * Mass will also be updated when set. * * @readOnly * @property density * @type number * @default 0.001 */ /** * _Read only_. Use `Body.setMass` to set. * * A `Number` that defines the mass of the body. * * Density will also be updated when set. * * @readOnly * @property mass * @type number */ /** * _Read only_. Use `Body.setMass` to set. * * A `Number` that defines the inverse mass of the body (`1 / mass`). * * @readOnly * @property inverseMass * @type number */ /** * _Read only_. Automatically calculated when vertices, mass or density are set or set through `Body.setInertia`. * * A `Number` that defines the moment of inertia of the body. This is the second moment of area in two dimensions. * * Can be manually set to `Infinity` to prevent rotation of the body. See `Body.setInertia`. * * @readOnly * @property inertia * @type number */ /** * _Read only_. Automatically calculated when vertices, mass or density are set or calculated by `Body.setInertia`. * * A `Number` that defines the inverse moment of inertia of the body (`1 / inertia`). * * @readOnly * @property inverseInertia * @type number */ /** * A `Number` that defines the restitution (elasticity) of the body. The value is always positive and is in the range `(0, 1)`. * A value of `0` means collisions may be perfectly inelastic and no bouncing may occur. * A value of `0.8` means the body may bounce back with approximately 80% of its kinetic energy. * Note that collision response is based on _pairs_ of bodies, and that `restitution` values are _combined_ with the following formula: * * `Math.max(bodyA.restitution, bodyB.restitution)` * * @property restitution * @type number * @default 0 */ /** * A `Number` that defines the friction of the body. The value is always positive and is in the range `(0, 1)`. * A value of `0` means that the body may slide indefinitely. * A value of `1` means the body may come to a stop almost instantly after a force is applied. * * The effects of the value may be non-linear. * High values may be unstable depending on the body. * The engine uses a Coulomb friction model including static and kinetic friction. * Note that collision response is based on _pairs_ of bodies, and that `friction` values are _combined_ with the following formula: * * `Math.min(bodyA.friction, bodyB.friction)` * * @property friction * @type number * @default 0.1 */ /** * A `Number` that defines the static friction of the body (in the Coulomb friction model). * A value of `0` means the body will never 'stick' when it is nearly stationary and only dynamic `friction` is used. * The higher the value (e.g. `10`), the more force it will take to initially get the body moving when nearly stationary. * This value is multiplied with the `friction` property to make it easier to change `friction` and maintain an appropriate amount of static friction. * * @property frictionStatic * @type number * @default 0.5 */ /** * A `Number` that defines the air friction of the body (air resistance). * A value of `0` means the body will never slow as it moves through space. * The higher the value, the faster a body slows when moving through space. * The effects of the value are non-linear. * * @property frictionAir * @type number * @default 0.01 */ /** * An `Object` that specifies the collision filtering properties of this body. * * Collisions between two bodies will obey the following rules: * - If the two bodies have the same non-zero value of `collisionFilter.group`, * they will always collide if the value is positive, and they will never collide * if the value is negative. * - If the two bodies have different values of `collisionFilter.group` or if one * (or both) of the bodies has a value of 0, then the category/mask rules apply as follows: * * Each body belongs to a collision category, given by `collisionFilter.category`. This * value is used as a bit field and the category should have only one bit set, meaning that * the value of this property is a power of two in the range [1, 2^31]. Thus, there are 32 * different collision categories available. * * Each body also defines a collision bitmask, given by `collisionFilter.mask` which specifies * the categories it collides with (the value is the bitwise AND value of all these categories). * * Using the category/mask rules, two bodies `A` and `B` collide if each includes the other's * category in its mask, i.e. `(categoryA & maskB) !== 0` and `(categoryB & maskA) !== 0` * are both true. * * @property collisionFilter * @type object */ /** * An Integer `Number`, that specifies the collision group this body belongs to. * See `body.collisionFilter` for more information. * * @property collisionFilter.group * @type object * @default 0 */ /** * A bit field that specifies the collision category this body belongs to. * The category value should have only one bit set, for example `0x0001`. * This means there are up to 32 unique collision categories available. * See `body.collisionFilter` for more information. * * @property collisionFilter.category * @type object * @default 1 */ /** * A bit mask that specifies the collision categories this body may collide with. * See `body.collisionFilter` for more information. * * @property collisionFilter.mask * @type object * @default -1 */ /** * A `Number` that specifies a thin boundary around the body where it is allowed to slightly sink into other bodies. * * This is required for proper collision response, including friction and restitution effects. * * The default should generally suffice in most cases. You may need to decrease this value for very small bodies that are nearing the default value in scale. * * @property slop * @type number * @default 0.05 */ /** * A `Number` that specifies per-body time scaling. * * @property timeScale * @type number * @default 1 */ /** * _Read only_. Updated during engine update. * * A `Number` that records the last delta time value used to update this body. * Used to calculate speed and velocity. * * @readOnly * @property deltaTime * @type number * @default 1000 / 60 */ /** * An `Object` that defines the rendering properties to be consumed by the module `Matter.Render`. * * @property render * @type object */ /** * A flag that indicates if the body should be rendered. * * @property render.visible * @type boolean * @default true */ /** * Sets the opacity to use when rendering. * * @property render.opacity * @type number * @default 1 */ /** * An `Object` that defines the sprite properties to use when rendering, if any. * * @property render.sprite * @type object */ /** * An `String` that defines the path to the image to use as the sprite texture, if any. * * @property render.sprite.texture * @type string */ /** * A `Number` that defines the scaling in the x-axis for the sprite, if any. * * @property render.sprite.xScale * @type number * @default 1 */ /** * A `Number` that defines the scaling in the y-axis for the sprite, if any. * * @property render.sprite.yScale * @type number * @default 1 */ /** * A `Number` that defines the offset in the x-axis for the sprite (normalised by texture width). * * @property render.sprite.xOffset * @type number * @default 0 */ /** * A `Number` that defines the offset in the y-axis for the sprite (normalised by texture height). * * @property render.sprite.yOffset * @type number * @default 0 */ /** * A `Number` that defines the line width to use when rendering the body outline (if a sprite is not defined). * A value of `0` means no outline will be rendered. * * @property render.lineWidth * @type number * @default 0 */ /** * A `String` that defines the fill style to use when rendering the body (if a sprite is not defined). * It is the same as when using a canvas, so it accepts CSS style property values. * * @property render.fillStyle * @type string * @default a random colour */ /** * A `String` that defines the stroke style to use when rendering the body outline (if a sprite is not defined). * It is the same as when using a canvas, so it accepts CSS style property values. * * @property render.strokeStyle * @type string * @default a random colour */ /** * _Read only_. Calculated automatically when vertices are set. * * An array of unique axis vectors (edge normals) used for collision detection. * These are automatically calculated when vertices are set. * They are constantly updated by `Body.update` during the simulation. * * @readOnly * @property axes * @type vector[] */ /** * _Read only_. Calculated automatically when vertices are set. * * A `Number` that measures the area of the body's convex hull. * * @readOnly * @property area * @type string * @default */ /** * A `Bounds` object that defines the AABB region for the body. * It is automatically calculated when vertices are set and constantly updated by `Body.update` during simulation. * * @property bounds * @type bounds */ /** * Temporarily may hold parameters to be passed to `Vertices.chamfer` where supported by external functions. * * See `Vertices.chamfer` for possible parameters this object may hold. * * Currently only functions inside `Matter.Bodies` provide a utility using this property as a vertices pre-processing option. * * Alternatively consider using `Vertices.chamfer` directly on vertices before passing them to a body creation function. * * @property chamfer * @type object|null|undefined */ })(); /***/ }), /* 5 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Events` module contains methods to fire and listen to events on other objects. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Events */ var Events = {}; module.exports = Events; var Common = __webpack_require__(0); (function() { /** * Subscribes a callback function to the given object's `eventName`. * @method on * @param {} object * @param {string} eventNames * @param {function} callback */ Events.on = function(object, eventNames, callback) { var names = eventNames.split(' '), name; for (var i = 0; i < names.length; i++) { name = names[i]; object.events = object.events || {}; object.events[name] = object.events[name] || []; object.events[name].push(callback); } return callback; }; /** * Removes the given event callback. If no callback, clears all callbacks in `eventNames`. If no `eventNames`, clears all events. * @method off * @param {} object * @param {string} eventNames * @param {function} callback */ Events.off = function(object, eventNames, callback) { if (!eventNames) { object.events = {}; return; } // handle Events.off(object, callback) if (typeof eventNames === 'function') { callback = eventNames; eventNames = Common.keys(object.events).join(' '); } var names = eventNames.split(' '); for (var i = 0; i < names.length; i++) { var callbacks = object.events[names[i]], newCallbacks = []; if (callback && callbacks) { for (var j = 0; j < callbacks.length; j++) { if (callbacks[j] !== callback) newCallbacks.push(callbacks[j]); } } object.events[names[i]] = newCallbacks; } }; /** * Fires all the callbacks subscribed to the given object's `eventName`, in the order they subscribed, if any. * @method trigger * @param {} object * @param {string} eventNames * @param {} event */ Events.trigger = function(object, eventNames, event) { var names, name, callbacks, eventClone; var events = object.events; if (events && Common.keys(events).length > 0) { if (!event) event = {}; names = eventNames.split(' '); for (var i = 0; i < names.length; i++) { name = names[i]; callbacks = events[name]; if (callbacks) { eventClone = Common.clone(event, false); eventClone.name = name; eventClone.source = object; for (var j = 0; j < callbacks.length; j++) { callbacks[j].apply(object, [eventClone]); } } } } }; })(); /***/ }), /* 6 */ /***/ (function(module, exports, __webpack_require__) { /** * A composite is a collection of `Matter.Body`, `Matter.Constraint` and other `Matter.Composite` objects. * * They are a container that can represent complex objects made of multiple parts, even if they are not physically connected. * A composite could contain anything from a single body all the way up to a whole world. * * When making any changes to composites, use the included functions rather than changing their properties directly. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Composite */ var Composite = {}; module.exports = Composite; var Events = __webpack_require__(5); var Common = __webpack_require__(0); var Bounds = __webpack_require__(1); var Body = __webpack_require__(4); (function() { /** * Creates a new composite. The options parameter is an object that specifies any properties you wish to override the defaults. * See the properites section below for detailed information on what you can pass via the `options` object. * @method create * @param {} [options] * @return {composite} A new composite */ Composite.create = function(options) { return Common.extend({ id: Common.nextId(), type: 'composite', parent: null, isModified: false, bodies: [], constraints: [], composites: [], label: 'Composite', plugin: {}, cache: { allBodies: null, allConstraints: null, allComposites: null } }, options); }; /** * Sets the composite's `isModified` flag. * If `updateParents` is true, all parents will be set (default: false). * If `updateChildren` is true, all children will be set (default: false). * @private * @method setModified * @param {composite} composite * @param {boolean} isModified * @param {boolean} [updateParents=false] * @param {boolean} [updateChildren=false] */ Composite.setModified = function(composite, isModified, updateParents, updateChildren) { composite.isModified = isModified; if (isModified && composite.cache) { composite.cache.allBodies = null; composite.cache.allConstraints = null; composite.cache.allComposites = null; } if (updateParents && composite.parent) { Composite.setModified(composite.parent, isModified, updateParents, updateChildren); } if (updateChildren) { for (var i = 0; i < composite.composites.length; i++) { var childComposite = composite.composites[i]; Composite.setModified(childComposite, isModified, updateParents, updateChildren); } } }; /** * Generic single or multi-add function. Adds a single or an array of body(s), constraint(s) or composite(s) to the given composite. * Triggers `beforeAdd` and `afterAdd` events on the `composite`. * @method add * @param {composite} composite * @param {object|array} object A single or an array of body(s), constraint(s) or composite(s) * @return {composite} The original composite with the objects added */ Composite.add = function(composite, object) { var objects = [].concat(object); Events.trigger(composite, 'beforeAdd', { object: object }); for (var i = 0; i < objects.length; i++) { var obj = objects[i]; switch (obj.type) { case 'body': // skip adding compound parts if (obj.parent !== obj) { Common.warn('Composite.add: skipped adding a compound body part (you must add its parent instead)'); break; } Composite.addBody(composite, obj); break; case 'constraint': Composite.addConstraint(composite, obj); break; case 'composite': Composite.addComposite(composite, obj); break; case 'mouseConstraint': Composite.addConstraint(composite, obj.constraint); break; } } Events.trigger(composite, 'afterAdd', { object: object }); return composite; }; /** * Generic remove function. Removes one or many body(s), constraint(s) or a composite(s) to the given composite. * Optionally searching its children recursively. * Triggers `beforeRemove` and `afterRemove` events on the `composite`. * @method remove * @param {composite} composite * @param {object|array} object * @param {boolean} [deep=false] * @return {composite} The original composite with the objects removed */ Composite.remove = function(composite, object, deep) { var objects = [].concat(object); Events.trigger(composite, 'beforeRemove', { object: object }); for (var i = 0; i < objects.length; i++) { var obj = objects[i]; switch (obj.type) { case 'body': Composite.removeBody(composite, obj, deep); break; case 'constraint': Composite.removeConstraint(composite, obj, deep); break; case 'composite': Composite.removeComposite(composite, obj, deep); break; case 'mouseConstraint': Composite.removeConstraint(composite, obj.constraint); break; } } Events.trigger(composite, 'afterRemove', { object: object }); return composite; }; /** * Adds a composite to the given composite. * @private * @method addComposite * @param {composite} compositeA * @param {composite} compositeB * @return {composite} The original compositeA with the objects from compositeB added */ Composite.addComposite = function(compositeA, compositeB) { compositeA.composites.push(compositeB); compositeB.parent = compositeA; Composite.setModified(compositeA, true, true, false); return compositeA; }; /** * Removes a composite from the given composite, and optionally searching its children recursively. * @private * @method removeComposite * @param {composite} compositeA * @param {composite} compositeB * @param {boolean} [deep=false] * @return {composite} The original compositeA with the composite removed */ Composite.removeComposite = function(compositeA, compositeB, deep) { var position = Common.indexOf(compositeA.composites, compositeB); if (position !== -1) { var bodies = Composite.allBodies(compositeB); Composite.removeCompositeAt(compositeA, position); for (var i = 0; i < bodies.length; i++) { bodies[i].sleepCounter = 0; } } if (deep) { for (var i = 0; i < compositeA.composites.length; i++){ Composite.removeComposite(compositeA.composites[i], compositeB, true); } } return compositeA; }; /** * Removes a composite from the given composite. * @private * @method removeCompositeAt * @param {composite} composite * @param {number} position * @return {composite} The original composite with the composite removed */ Composite.removeCompositeAt = function(composite, position) { composite.composites.splice(position, 1); Composite.setModified(composite, true, true, false); return composite; }; /** * Adds a body to the given composite. * @private * @method addBody * @param {composite} composite * @param {body} body * @return {composite} The original composite with the body added */ Composite.addBody = function(composite, body) { composite.bodies.push(body); Composite.setModified(composite, true, true, false); return composite; }; /** * Removes a body from the given composite, and optionally searching its children recursively. * @private * @method removeBody * @param {composite} composite * @param {body} body * @param {boolean} [deep=false] * @return {composite} The original composite with the body removed */ Composite.removeBody = function(composite, body, deep) { var position = Common.indexOf(composite.bodies, body); if (position !== -1) { Composite.removeBodyAt(composite, position); body.sleepCounter = 0; } if (deep) { for (var i = 0; i < composite.composites.length; i++){ Composite.removeBody(composite.composites[i], body, true); } } return composite; }; /** * Removes a body from the given composite. * @private * @method removeBodyAt * @param {composite} composite * @param {number} position * @return {composite} The original composite with the body removed */ Composite.removeBodyAt = function(composite, position) { composite.bodies.splice(position, 1); Composite.setModified(composite, true, true, false); return composite; }; /** * Adds a constraint to the given composite. * @private * @method addConstraint * @param {composite} composite * @param {constraint} constraint * @return {composite} The original composite with the constraint added */ Composite.addConstraint = function(composite, constraint) { composite.constraints.push(constraint); Composite.setModified(composite, true, true, false); return composite; }; /** * Removes a constraint from the given composite, and optionally searching its children recursively. * @private * @method removeConstraint * @param {composite} composite * @param {constraint} constraint * @param {boolean} [deep=false] * @return {composite} The original composite with the constraint removed */ Composite.removeConstraint = function(composite, constraint, deep) { var position = Common.indexOf(composite.constraints, constraint); if (position !== -1) { Composite.removeConstraintAt(composite, position); } if (deep) { for (var i = 0; i < composite.composites.length; i++){ Composite.removeConstraint(composite.composites[i], constraint, true); } } return composite; }; /** * Removes a body from the given composite. * @private * @method removeConstraintAt * @param {composite} composite * @param {number} position * @return {composite} The original composite with the constraint removed */ Composite.removeConstraintAt = function(composite, position) { composite.constraints.splice(position, 1); Composite.setModified(composite, true, true, false); return composite; }; /** * Removes all bodies, constraints and composites from the given composite. * Optionally clearing its children recursively. * @method clear * @param {composite} composite * @param {boolean} keepStatic * @param {boolean} [deep=false] */ Composite.clear = function(composite, keepStatic, deep) { if (deep) { for (var i = 0; i < composite.composites.length; i++){ Composite.clear(composite.composites[i], keepStatic, true); } } if (keepStatic) { composite.bodies = composite.bodies.filter(function(body) { return body.isStatic; }); } else { composite.bodies.length = 0; } composite.constraints.length = 0; composite.composites.length = 0; Composite.setModified(composite, true, true, false); return composite; }; /** * Returns all bodies in the given composite, including all bodies in its children, recursively. * @method allBodies * @param {composite} composite * @return {body[]} All the bodies */ Composite.allBodies = function(composite) { if (composite.cache && composite.cache.allBodies) { return composite.cache.allBodies; } var bodies = [].concat(composite.bodies); for (var i = 0; i < composite.composites.length; i++) bodies = bodies.concat(Composite.allBodies(composite.composites[i])); if (composite.cache) { composite.cache.allBodies = bodies; } return bodies; }; /** * Returns all constraints in the given composite, including all constraints in its children, recursively. * @method allConstraints * @param {composite} composite * @return {constraint[]} All the constraints */ Composite.allConstraints = function(composite) { if (composite.cache && composite.cache.allConstraints) { return composite.cache.allConstraints; } var constraints = [].concat(composite.constraints); for (var i = 0; i < composite.composites.length; i++) constraints = constraints.concat(Composite.allConstraints(composite.composites[i])); if (composite.cache) { composite.cache.allConstraints = constraints; } return constraints; }; /** * Returns all composites in the given composite, including all composites in its children, recursively. * @method allComposites * @param {composite} composite * @return {composite[]} All the composites */ Composite.allComposites = function(composite) { if (composite.cache && composite.cache.allComposites) { return composite.cache.allComposites; } var composites = [].concat(composite.composites); for (var i = 0; i < composite.composites.length; i++) composites = composites.concat(Composite.allComposites(composite.composites[i])); if (composite.cache) { composite.cache.allComposites = composites; } return composites; }; /** * Searches the composite recursively for an object matching the type and id supplied, null if not found. * @method get * @param {composite} composite * @param {number} id * @param {string} type * @return {object} The requested object, if found */ Composite.get = function(composite, id, type) { var objects, object; switch (type) { case 'body': objects = Composite.allBodies(composite); break; case 'constraint': objects = Composite.allConstraints(composite); break; case 'composite': objects = Composite.allComposites(composite).concat(composite); break; } if (!objects) return null; object = objects.filter(function(object) { return object.id.toString() === id.toString(); }); return object.length === 0 ? null : object[0]; }; /** * Moves the given object(s) from compositeA to compositeB (equal to a remove followed by an add). * @method move * @param {compositeA} compositeA * @param {object[]} objects * @param {compositeB} compositeB * @return {composite} Returns compositeA */ Composite.move = function(compositeA, objects, compositeB) { Composite.remove(compositeA, objects); Composite.add(compositeB, objects); return compositeA; }; /** * Assigns new ids for all objects in the composite, recursively. * @method rebase * @param {composite} composite * @return {composite} Returns composite */ Composite.rebase = function(composite) { var objects = Composite.allBodies(composite) .concat(Composite.allConstraints(composite)) .concat(Composite.allComposites(composite)); for (var i = 0; i < objects.length; i++) { objects[i].id = Common.nextId(); } return composite; }; /** * Translates all children in the composite by a given vector relative to their current positions, * without imparting any velocity. * @method translate * @param {composite} composite * @param {vector} translation * @param {bool} [recursive=true] */ Composite.translate = function(composite, translation, recursive) { var bodies = recursive ? Composite.allBodies(composite) : composite.bodies; for (var i = 0; i < bodies.length; i++) { Body.translate(bodies[i], translation); } return composite; }; /** * Rotates all children in the composite by a given angle about the given point, without imparting any angular velocity. * @method rotate * @param {composite} composite * @param {number} rotation * @param {vector} point * @param {bool} [recursive=true] */ Composite.rotate = function(composite, rotation, point, recursive) { var cos = Math.cos(rotation), sin = Math.sin(rotation), bodies = recursive ? Composite.allBodies(composite) : composite.bodies; for (var i = 0; i < bodies.length; i++) { var body = bodies[i], dx = body.position.x - point.x, dy = body.position.y - point.y; Body.setPosition(body, { x: point.x + (dx * cos - dy * sin), y: point.y + (dx * sin + dy * cos) }); Body.rotate(body, rotation); } return composite; }; /** * Scales all children in the composite, including updating physical properties (mass, area, axes, inertia), from a world-space point. * @method scale * @param {composite} composite * @param {number} scaleX * @param {number} scaleY * @param {vector} point * @param {bool} [recursive=true] */ Composite.scale = function(composite, scaleX, scaleY, point, recursive) { var bodies = recursive ? Composite.allBodies(composite) : composite.bodies; for (var i = 0; i < bodies.length; i++) { var body = bodies[i], dx = body.position.x - point.x, dy = body.position.y - point.y; Body.setPosition(body, { x: point.x + dx * scaleX, y: point.y + dy * scaleY }); Body.scale(body, scaleX, scaleY); } return composite; }; /** * Returns the union of the bounds of all of the composite's bodies. * @method bounds * @param {composite} composite The composite. * @returns {bounds} The composite bounds. */ Composite.bounds = function(composite) { var bodies = Composite.allBodies(composite), vertices = []; for (var i = 0; i < bodies.length; i += 1) { var body = bodies[i]; vertices.push(body.bounds.min, body.bounds.max); } return Bounds.create(vertices); }; /* * * Events Documentation * */ /** * Fired when a call to `Composite.add` is made, before objects have been added. * * @event beforeAdd * @param {} event An event object * @param {} event.object The object(s) to be added (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when a call to `Composite.add` is made, after objects have been added. * * @event afterAdd * @param {} event An event object * @param {} event.object The object(s) that have been added (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when a call to `Composite.remove` is made, before objects have been removed. * * @event beforeRemove * @param {} event An event object * @param {} event.object The object(s) to be removed (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when a call to `Composite.remove` is made, after objects have been removed. * * @event afterRemove * @param {} event An event object * @param {} event.object The object(s) that have been removed (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /* * * Properties Documentation * */ /** * An integer `Number` uniquely identifying number generated in `Composite.create` by `Common.nextId`. * * @property id * @type number */ /** * A `String` denoting the type of object. * * @property type * @type string * @default "composite" * @readOnly */ /** * An arbitrary `String` name to help the user identify and manage composites. * * @property label * @type string * @default "Composite" */ /** * A flag that specifies whether the composite has been modified during the current step. * This is automatically managed when bodies, constraints or composites are added or removed. * * @property isModified * @type boolean * @default false */ /** * The `Composite` that is the parent of this composite. It is automatically managed by the `Matter.Composite` methods. * * @property parent * @type composite * @default null */ /** * An array of `Body` that are _direct_ children of this composite. * To add or remove bodies you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allBodies` method. * * @property bodies * @type body[] * @default [] */ /** * An array of `Constraint` that are _direct_ children of this composite. * To add or remove constraints you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allConstraints` method. * * @property constraints * @type constraint[] * @default [] */ /** * An array of `Composite` that are _direct_ children of this composite. * To add or remove composites you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allComposites` method. * * @property composites * @type composite[] * @default [] */ /** * An object reserved for storing plugin-specific properties. * * @property plugin * @type {} */ /** * An object used for storing cached results for performance reasons. * This is used internally only and is automatically managed. * * @private * @property cache * @type {} */ })(); /***/ }), /* 7 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Sleeping` module contains methods to manage the sleeping state of bodies. * * @class Sleeping */ var Sleeping = {}; module.exports = Sleeping; var Body = __webpack_require__(4); var Events = __webpack_require__(5); var Common = __webpack_require__(0); (function() { Sleeping._motionWakeThreshold = 0.18; Sleeping._motionSleepThreshold = 0.08; Sleeping._minBias = 0.9; /** * Puts bodies to sleep or wakes them up depending on their motion. * @method update * @param {body[]} bodies * @param {number} delta */ Sleeping.update = function(bodies, delta) { var timeScale = delta / Common._baseDelta, motionSleepThreshold = Sleeping._motionSleepThreshold; // update bodies sleeping status for (var i = 0; i < bodies.length; i++) { var body = bodies[i], speed = Body.getSpeed(body), angularSpeed = Body.getAngularSpeed(body), motion = speed * speed + angularSpeed * angularSpeed; // wake up bodies if they have a force applied if (body.force.x !== 0 || body.force.y !== 0) { Sleeping.set(body, false); continue; } var minMotion = Math.min(body.motion, motion), maxMotion = Math.max(body.motion, motion); // biased average motion estimation between frames body.motion = Sleeping._minBias * minMotion + (1 - Sleeping._minBias) * maxMotion; if (body.sleepThreshold > 0 && body.motion < motionSleepThreshold) { body.sleepCounter += 1; if (body.sleepCounter >= body.sleepThreshold / timeScale) { Sleeping.set(body, true); } } else if (body.sleepCounter > 0) { body.sleepCounter -= 1; } } }; /** * Given a set of colliding pairs, wakes the sleeping bodies involved. * @method afterCollisions * @param {pair[]} pairs */ Sleeping.afterCollisions = function(pairs) { var motionSleepThreshold = Sleeping._motionSleepThreshold; // wake up bodies involved in collisions for (var i = 0; i < pairs.length; i++) { var pair = pairs[i]; // don't wake inactive pairs if (!pair.isActive) continue; var collision = pair.collision, bodyA = collision.bodyA.parent, bodyB = collision.bodyB.parent; // don't wake if at least one body is static if ((bodyA.isSleeping && bodyB.isSleeping) || bodyA.isStatic || bodyB.isStatic) continue; if (bodyA.isSleeping || bodyB.isSleeping) { var sleepingBody = (bodyA.isSleeping && !bodyA.isStatic) ? bodyA : bodyB, movingBody = sleepingBody === bodyA ? bodyB : bodyA; if (!sleepingBody.isStatic && movingBody.motion > motionSleepThreshold) { Sleeping.set(sleepingBody, false); } } } }; /** * Set a body as sleeping or awake. * @method set * @param {body} body * @param {boolean} isSleeping */ Sleeping.set = function(body, isSleeping) { var wasSleeping = body.isSleeping; if (isSleeping) { body.isSleeping = true; body.sleepCounter = body.sleepThreshold; body.positionImpulse.x = 0; body.positionImpulse.y = 0; body.positionPrev.x = body.position.x; body.positionPrev.y = body.position.y; body.anglePrev = body.angle; body.speed = 0; body.angularSpeed = 0; body.motion = 0; if (!wasSleeping) { Events.trigger(body, 'sleepStart'); } } else { body.isSleeping = false; body.sleepCounter = 0; if (wasSleeping) { Events.trigger(body, 'sleepEnd'); } } }; })(); /***/ }), /* 8 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Collision` module contains methods for detecting collisions between a given pair of bodies. * * For efficient detection between a list of bodies, see `Matter.Detector` and `Matter.Query`. * * See `Matter.Engine` for collision events. * * @class Collision */ var Collision = {}; module.exports = Collision; var Vertices = __webpack_require__(3); var Pair = __webpack_require__(9); (function() { var _supports = []; var _overlapAB = { overlap: 0, axis: null }; var _overlapBA = { overlap: 0, axis: null }; /** * Creates a new collision record. * @method create * @param {body} bodyA The first body part represented by the collision record * @param {body} bodyB The second body part represented by the collision record * @return {collision} A new collision record */ Collision.create = function(bodyA, bodyB) { return { pair: null, collided: false, bodyA: bodyA, bodyB: bodyB, parentA: bodyA.parent, parentB: bodyB.parent, depth: 0, normal: { x: 0, y: 0 }, tangent: { x: 0, y: 0 }, penetration: { x: 0, y: 0 }, supports: [null, null], supportCount: 0 }; }; /** * Detect collision between two bodies. * @method collides * @param {body} bodyA * @param {body} bodyB * @param {pairs} [pairs] Optionally reuse collision records from existing pairs. * @return {collision|null} A collision record if detected, otherwise null */ Collision.collides = function(bodyA, bodyB, pairs) { Collision._overlapAxes(_overlapAB, bodyA.vertices, bodyB.vertices, bodyA.axes); if (_overlapAB.overlap <= 0) { return null; } Collision._overlapAxes(_overlapBA, bodyB.vertices, bodyA.vertices, bodyB.axes); if (_overlapBA.overlap <= 0) { return null; } // reuse collision records for gc efficiency var pair = pairs && pairs.table[Pair.id(bodyA, bodyB)], collision; if (!pair) { collision = Collision.create(bodyA, bodyB); collision.collided = true; collision.bodyA = bodyA.id < bodyB.id ? bodyA : bodyB; collision.bodyB = bodyA.id < bodyB.id ? bodyB : bodyA; collision.parentA = collision.bodyA.parent; collision.parentB = collision.bodyB.parent; } else { collision = pair.collision; } bodyA = collision.bodyA; bodyB = collision.bodyB; var minOverlap; if (_overlapAB.overlap < _overlapBA.overlap) { minOverlap = _overlapAB; } else { minOverlap = _overlapBA; } var normal = collision.normal, tangent = collision.tangent, penetration = collision.penetration, supports = collision.supports, depth = minOverlap.overlap, minAxis = minOverlap.axis, normalX = minAxis.x, normalY = minAxis.y, deltaX = bodyB.position.x - bodyA.position.x, deltaY = bodyB.position.y - bodyA.position.y; // ensure normal is facing away from bodyA if (normalX * deltaX + normalY * deltaY >= 0) { normalX = -normalX; normalY = -normalY; } normal.x = normalX; normal.y = normalY; tangent.x = -normalY; tangent.y = normalX; penetration.x = normalX * depth; penetration.y = normalY * depth; collision.depth = depth; // find support points, there is always either exactly one or two var supportsB = Collision._findSupports(bodyA, bodyB, normal, 1), supportCount = 0; // find the supports from bodyB that are inside bodyA if (Vertices.contains(bodyA.vertices, supportsB[0])) { supports[supportCount++] = supportsB[0]; } if (Vertices.contains(bodyA.vertices, supportsB[1])) { supports[supportCount++] = supportsB[1]; } // find the supports from bodyA that are inside bodyB if (supportCount < 2) { var supportsA = Collision._findSupports(bodyB, bodyA, normal, -1); if (Vertices.contains(bodyB.vertices, supportsA[0])) { supports[supportCount++] = supportsA[0]; } if (supportCount < 2 && Vertices.contains(bodyB.vertices, supportsA[1])) { supports[supportCount++] = supportsA[1]; } } // account for the edge case of overlapping but no vertex containment if (supportCount === 0) { supports[supportCount++] = supportsB[0]; } // update support count collision.supportCount = supportCount; return collision; }; /** * Find the overlap between two sets of vertices. * @method _overlapAxes * @private * @param {object} result * @param {vertices} verticesA * @param {vertices} verticesB * @param {axes} axes */ Collision._overlapAxes = function(result, verticesA, verticesB, axes) { var verticesALength = verticesA.length, verticesBLength = verticesB.length, verticesAX = verticesA[0].x, verticesAY = verticesA[0].y, verticesBX = verticesB[0].x, verticesBY = verticesB[0].y, axesLength = axes.length, overlapMin = Number.MAX_VALUE, overlapAxisNumber = 0, overlap, overlapAB, overlapBA, dot, i, j; for (i = 0; i < axesLength; i++) { var axis = axes[i], axisX = axis.x, axisY = axis.y, minA = verticesAX * axisX + verticesAY * axisY, minB = verticesBX * axisX + verticesBY * axisY, maxA = minA, maxB = minB; for (j = 1; j < verticesALength; j += 1) { dot = verticesA[j].x * axisX + verticesA[j].y * axisY; if (dot > maxA) { maxA = dot; } else if (dot < minA) { minA = dot; } } for (j = 1; j < verticesBLength; j += 1) { dot = verticesB[j].x * axisX + verticesB[j].y * axisY; if (dot > maxB) { maxB = dot; } else if (dot < minB) { minB = dot; } } overlapAB = maxA - minB; overlapBA = maxB - minA; overlap = overlapAB < overlapBA ? overlapAB : overlapBA; if (overlap < overlapMin) { overlapMin = overlap; overlapAxisNumber = i; if (overlap <= 0) { // can not be intersecting break; } } } result.axis = axes[overlapAxisNumber]; result.overlap = overlapMin; }; /** * Finds supporting vertices given two bodies along a given direction using hill-climbing. * @method _findSupports * @private * @param {body} bodyA * @param {body} bodyB * @param {vector} normal * @param {number} direction * @return [vector] */ Collision._findSupports = function(bodyA, bodyB, normal, direction) { var vertices = bodyB.vertices, verticesLength = vertices.length, bodyAPositionX = bodyA.position.x, bodyAPositionY = bodyA.position.y, normalX = normal.x * direction, normalY = normal.y * direction, vertexA = vertices[0], vertexB = vertexA, nearestDistance = normalX * (bodyAPositionX - vertexB.x) + normalY * (bodyAPositionY - vertexB.y), vertexC, distance, j; // find deepest vertex relative to the axis for (j = 1; j < verticesLength; j += 1) { vertexB = vertices[j]; distance = normalX * (bodyAPositionX - vertexB.x) + normalY * (bodyAPositionY - vertexB.y); // convex hill-climbing if (distance < nearestDistance) { nearestDistance = distance; vertexA = vertexB; } } // measure next vertex vertexC = vertices[(verticesLength + vertexA.index - 1) % verticesLength]; nearestDistance = normalX * (bodyAPositionX - vertexC.x) + normalY * (bodyAPositionY - vertexC.y); // compare with previous vertex vertexB = vertices[(vertexA.index + 1) % verticesLength]; if (normalX * (bodyAPositionX - vertexB.x) + normalY * (bodyAPositionY - vertexB.y) < nearestDistance) { _supports[0] = vertexA; _supports[1] = vertexB; return _supports; } _supports[0] = vertexA; _supports[1] = vertexC; return _supports; }; /* * * Properties Documentation * */ /** * A reference to the pair using this collision record, if there is one. * * @property pair * @type {pair|null} * @default null */ /** * A flag that indicates if the bodies were colliding when the collision was last updated. * * @property collided * @type boolean * @default false */ /** * The first body part represented by the collision (see also `collision.parentA`). * * @property bodyA * @type body */ /** * The second body part represented by the collision (see also `collision.parentB`). * * @property bodyB * @type body */ /** * The first body represented by the collision (i.e. `collision.bodyA.parent`). * * @property parentA * @type body */ /** * The second body represented by the collision (i.e. `collision.bodyB.parent`). * * @property parentB * @type body */ /** * A `Number` that represents the minimum separating distance between the bodies along the collision normal. * * @readOnly * @property depth * @type number * @default 0 */ /** * A normalised `Vector` that represents the direction between the bodies that provides the minimum separating distance. * * @property normal * @type vector * @default { x: 0, y: 0 } */ /** * A normalised `Vector` that is the tangent direction to the collision normal. * * @property tangent * @type vector * @default { x: 0, y: 0 } */ /** * A `Vector` that represents the direction and depth of the collision. * * @property penetration * @type vector * @default { x: 0, y: 0 } */ /** * An array of body vertices that represent the support points in the collision. * * _Note:_ Only the first `collision.supportCount` items of `collision.supports` are active. * Therefore use `collision.supportCount` instead of `collision.supports.length` when iterating the active supports. * * These are the deepest vertices (along the collision normal) of each body that are contained by the other body's vertices. * * @property supports * @type vector[] * @default [] */ /** * The number of active supports for this collision found in `collision.supports`. * * _Note:_ Only the first `collision.supportCount` items of `collision.supports` are active. * Therefore use `collision.supportCount` instead of `collision.supports.length` when iterating the active supports. * * @property supportCount * @type number * @default 0 */ })(); /***/ }), /* 9 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Pair` module contains methods for creating and manipulating collision pairs. * * @class Pair */ var Pair = {}; module.exports = Pair; var Contact = __webpack_require__(16); (function() { /** * Creates a pair. * @method create * @param {collision} collision * @param {number} timestamp * @return {pair} A new pair */ Pair.create = function(collision, timestamp) { var bodyA = collision.bodyA, bodyB = collision.bodyB; var pair = { id: Pair.id(bodyA, bodyB), bodyA: bodyA, bodyB: bodyB, collision: collision, contacts: [Contact.create(), Contact.create()], contactCount: 0, separation: 0, isActive: true, isSensor: bodyA.isSensor || bodyB.isSensor, timeCreated: timestamp, timeUpdated: timestamp, inverseMass: 0, friction: 0, frictionStatic: 0, restitution: 0, slop: 0 }; Pair.update(pair, collision, timestamp); return pair; }; /** * Updates a pair given a collision. * @method update * @param {pair} pair * @param {collision} collision * @param {number} timestamp */ Pair.update = function(pair, collision, timestamp) { var supports = collision.supports, supportCount = collision.supportCount, contacts = pair.contacts, parentA = collision.parentA, parentB = collision.parentB; pair.isActive = true; pair.timeUpdated = timestamp; pair.collision = collision; pair.separation = collision.depth; pair.inverseMass = parentA.inverseMass + parentB.inverseMass; pair.friction = parentA.friction < parentB.friction ? parentA.friction : parentB.friction; pair.frictionStatic = parentA.frictionStatic > parentB.frictionStatic ? parentA.frictionStatic : parentB.frictionStatic; pair.restitution = parentA.restitution > parentB.restitution ? parentA.restitution : parentB.restitution; pair.slop = parentA.slop > parentB.slop ? parentA.slop : parentB.slop; pair.contactCount = supportCount; collision.pair = pair; var supportA = supports[0], contactA = contacts[0], supportB = supports[1], contactB = contacts[1]; // match contacts to supports if (contactB.vertex === supportA || contactA.vertex === supportB) { contacts[1] = contactA; contacts[0] = contactA = contactB; contactB = contacts[1]; } // update contacts contactA.vertex = supportA; contactB.vertex = supportB; }; /** * Set a pair as active or inactive. * @method setActive * @param {pair} pair * @param {bool} isActive * @param {number} timestamp */ Pair.setActive = function(pair, isActive, timestamp) { if (isActive) { pair.isActive = true; pair.timeUpdated = timestamp; } else { pair.isActive = false; pair.contactCount = 0; } }; /** * Get the id for the given pair. * @method id * @param {body} bodyA * @param {body} bodyB * @return {string} Unique pairId */ Pair.id = function(bodyA, bodyB) { return bodyA.id < bodyB.id ? bodyA.id.toString(36) + ':' + bodyB.id.toString(36) : bodyB.id.toString(36) + ':' + bodyA.id.toString(36); }; })(); /***/ }), /* 10 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Constraint` module contains methods for creating and manipulating constraints. * Constraints are used for specifying that a fixed distance must be maintained between two bodies (or a body and a fixed world-space position). * The stiffness of constraints can be modified to create springs or elastic. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Constraint */ var Constraint = {}; module.exports = Constraint; var Vertices = __webpack_require__(3); var Vector = __webpack_require__(2); var Sleeping = __webpack_require__(7); var Bounds = __webpack_require__(1); var Axes = __webpack_require__(11); var Common = __webpack_require__(0); (function() { Constraint._warming = 0.4; Constraint._torqueDampen = 1; Constraint._minLength = 0.000001; /** * Creates a new constraint. * All properties have default values, and many are pre-calculated automatically based on other properties. * To simulate a revolute constraint (or pin joint) set `length: 0` and a high `stiffness` value (e.g. `0.7` or above). * If the constraint is unstable, try lowering the `stiffness` value and / or increasing `engine.constraintIterations`. * For compound bodies, constraints must be applied to the parent body (not one of its parts). * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {} options * @return {constraint} constraint */ Constraint.create = function(options) { var constraint = options; // if bodies defined but no points, use body centre if (constraint.bodyA && !constraint.pointA) constraint.pointA = { x: 0, y: 0 }; if (constraint.bodyB && !constraint.pointB) constraint.pointB = { x: 0, y: 0 }; // calculate static length using initial world space points var initialPointA = constraint.bodyA ? Vector.add(constraint.bodyA.position, constraint.pointA) : constraint.pointA, initialPointB = constraint.bodyB ? Vector.add(constraint.bodyB.position, constraint.pointB) : constraint.pointB, length = Vector.magnitude(Vector.sub(initialPointA, initialPointB)); constraint.length = typeof constraint.length !== 'undefined' ? constraint.length : length; // option defaults constraint.id = constraint.id || Common.nextId(); constraint.label = constraint.label || 'Constraint'; constraint.type = 'constraint'; constraint.stiffness = constraint.stiffness || (constraint.length > 0 ? 1 : 0.7); constraint.damping = constraint.damping || 0; constraint.angularStiffness = constraint.angularStiffness || 0; constraint.angleA = constraint.bodyA ? constraint.bodyA.angle : constraint.angleA; constraint.angleB = constraint.bodyB ? constraint.bodyB.angle : constraint.angleB; constraint.plugin = {}; // render var render = { visible: true, lineWidth: 2, strokeStyle: '#ffffff', type: 'line', anchors: true }; if (constraint.length === 0 && constraint.stiffness > 0.1) { render.type = 'pin'; render.anchors = false; } else if (constraint.stiffness < 0.9) { render.type = 'spring'; } constraint.render = Common.extend(render, constraint.render); return constraint; }; /** * Prepares for solving by constraint warming. * @private * @method preSolveAll * @param {body[]} bodies */ Constraint.preSolveAll = function(bodies) { for (var i = 0; i < bodies.length; i += 1) { var body = bodies[i], impulse = body.constraintImpulse; if (body.isStatic || (impulse.x === 0 && impulse.y === 0 && impulse.angle === 0)) { continue; } body.position.x += impulse.x; body.position.y += impulse.y; body.angle += impulse.angle; } }; /** * Solves all constraints in a list of collisions. * @private * @method solveAll * @param {constraint[]} constraints * @param {number} delta */ Constraint.solveAll = function(constraints, delta) { var timeScale = Common.clamp(delta / Common._baseDelta, 0, 1); // Solve fixed constraints first. for (var i = 0; i < constraints.length; i += 1) { var constraint = constraints[i], fixedA = !constraint.bodyA || (constraint.bodyA && constraint.bodyA.isStatic), fixedB = !constraint.bodyB || (constraint.bodyB && constraint.bodyB.isStatic); if (fixedA || fixedB) { Constraint.solve(constraints[i], timeScale); } } // Solve free constraints last. for (i = 0; i < constraints.length; i += 1) { constraint = constraints[i]; fixedA = !constraint.bodyA || (constraint.bodyA && constraint.bodyA.isStatic); fixedB = !constraint.bodyB || (constraint.bodyB && constraint.bodyB.isStatic); if (!fixedA && !fixedB) { Constraint.solve(constraints[i], timeScale); } } }; /** * Solves a distance constraint with Gauss-Siedel method. * @private * @method solve * @param {constraint} constraint * @param {number} timeScale */ Constraint.solve = function(constraint, timeScale) { var bodyA = constraint.bodyA, bodyB = constraint.bodyB, pointA = constraint.pointA, pointB = constraint.pointB; if (!bodyA && !bodyB) return; // update reference angle if (bodyA && !bodyA.isStatic) { Vector.rotate(pointA, bodyA.angle - constraint.angleA, pointA); constraint.angleA = bodyA.angle; } // update reference angle if (bodyB && !bodyB.isStatic) { Vector.rotate(pointB, bodyB.angle - constraint.angleB, pointB); constraint.angleB = bodyB.angle; } var pointAWorld = pointA, pointBWorld = pointB; if (bodyA) pointAWorld = Vector.add(bodyA.position, pointA); if (bodyB) pointBWorld = Vector.add(bodyB.position, pointB); if (!pointAWorld || !pointBWorld) return; var delta = Vector.sub(pointAWorld, pointBWorld), currentLength = Vector.magnitude(delta); // prevent singularity if (currentLength < Constraint._minLength) { currentLength = Constraint._minLength; } // solve distance constraint with Gauss-Siedel method var difference = (currentLength - constraint.length) / currentLength, isRigid = constraint.stiffness >= 1 || constraint.length === 0, stiffness = isRigid ? constraint.stiffness * timeScale : constraint.stiffness * timeScale * timeScale, damping = constraint.damping * timeScale, force = Vector.mult(delta, difference * stiffness), massTotal = (bodyA ? bodyA.inverseMass : 0) + (bodyB ? bodyB.inverseMass : 0), inertiaTotal = (bodyA ? bodyA.inverseInertia : 0) + (bodyB ? bodyB.inverseInertia : 0), resistanceTotal = massTotal + inertiaTotal, torque, share, normal, normalVelocity, relativeVelocity; if (damping > 0) { var zero = Vector.create(); normal = Vector.div(delta, currentLength); relativeVelocity = Vector.sub( bodyB && Vector.sub(bodyB.position, bodyB.positionPrev) || zero, bodyA && Vector.sub(bodyA.position, bodyA.positionPrev) || zero ); normalVelocity = Vector.dot(normal, relativeVelocity); } if (bodyA && !bodyA.isStatic) { share = bodyA.inverseMass / massTotal; // keep track of applied impulses for post solving bodyA.constraintImpulse.x -= force.x * share; bodyA.constraintImpulse.y -= force.y * share; // apply forces bodyA.position.x -= force.x * share; bodyA.position.y -= force.y * share; // apply damping if (damping > 0) { bodyA.positionPrev.x -= damping * normal.x * normalVelocity * share; bodyA.positionPrev.y -= damping * normal.y * normalVelocity * share; } // apply torque torque = (Vector.cross(pointA, force) / resistanceTotal) * Constraint._torqueDampen * bodyA.inverseInertia * (1 - constraint.angularStiffness); bodyA.constraintImpulse.angle -= torque; bodyA.angle -= torque; } if (bodyB && !bodyB.isStatic) { share = bodyB.inverseMass / massTotal; // keep track of applied impulses for post solving bodyB.constraintImpulse.x += force.x * share; bodyB.constraintImpulse.y += force.y * share; // apply forces bodyB.position.x += force.x * share; bodyB.position.y += force.y * share; // apply damping if (damping > 0) { bodyB.positionPrev.x += damping * normal.x * normalVelocity * share; bodyB.positionPrev.y += damping * normal.y * normalVelocity * share; } // apply torque torque = (Vector.cross(pointB, force) / resistanceTotal) * Constraint._torqueDampen * bodyB.inverseInertia * (1 - constraint.angularStiffness); bodyB.constraintImpulse.angle += torque; bodyB.angle += torque; } }; /** * Performs body updates required after solving constraints. * @private * @method postSolveAll * @param {body[]} bodies */ Constraint.postSolveAll = function(bodies) { for (var i = 0; i < bodies.length; i++) { var body = bodies[i], impulse = body.constraintImpulse; if (body.isStatic || (impulse.x === 0 && impulse.y === 0 && impulse.angle === 0)) { continue; } Sleeping.set(body, false); // update geometry and reset for (var j = 0; j < body.parts.length; j++) { var part = body.parts[j]; Vertices.translate(part.vertices, impulse); if (j > 0) { part.position.x += impulse.x; part.position.y += impulse.y; } if (impulse.angle !== 0) { Vertices.rotate(part.vertices, impulse.angle, body.position); Axes.rotate(part.axes, impulse.angle); if (j > 0) { Vector.rotateAbout(part.position, impulse.angle, body.position, part.position); } } Bounds.update(part.bounds, part.vertices, body.velocity); } // dampen the cached impulse for warming next step impulse.angle *= Constraint._warming; impulse.x *= Constraint._warming; impulse.y *= Constraint._warming; } }; /** * Returns the world-space position of `constraint.pointA`, accounting for `constraint.bodyA`. * @method pointAWorld * @param {constraint} constraint * @returns {vector} the world-space position */ Constraint.pointAWorld = function(constraint) { return { x: (constraint.bodyA ? constraint.bodyA.position.x : 0) + (constraint.pointA ? constraint.pointA.x : 0), y: (constraint.bodyA ? constraint.bodyA.position.y : 0) + (constraint.pointA ? constraint.pointA.y : 0) }; }; /** * Returns the world-space position of `constraint.pointB`, accounting for `constraint.bodyB`. * @method pointBWorld * @param {constraint} constraint * @returns {vector} the world-space position */ Constraint.pointBWorld = function(constraint) { return { x: (constraint.bodyB ? constraint.bodyB.position.x : 0) + (constraint.pointB ? constraint.pointB.x : 0), y: (constraint.bodyB ? constraint.bodyB.position.y : 0) + (constraint.pointB ? constraint.pointB.y : 0) }; }; /** * Returns the current length of the constraint. * This is the distance between both of the constraint's end points. * See `constraint.length` for the target rest length. * @method currentLength * @param {constraint} constraint * @returns {number} the current length */ Constraint.currentLength = function(constraint) { var pointAX = (constraint.bodyA ? constraint.bodyA.position.x : 0) + (constraint.pointA ? constraint.pointA.x : 0); var pointAY = (constraint.bodyA ? constraint.bodyA.position.y : 0) + (constraint.pointA ? constraint.pointA.y : 0); var pointBX = (constraint.bodyB ? constraint.bodyB.position.x : 0) + (constraint.pointB ? constraint.pointB.x : 0); var pointBY = (constraint.bodyB ? constraint.bodyB.position.y : 0) + (constraint.pointB ? constraint.pointB.y : 0); var deltaX = pointAX - pointBX; var deltaY = pointAY - pointBY; return Math.sqrt(deltaX * deltaX + deltaY * deltaY); }; /* * * Properties Documentation * */ /** * An integer `Number` uniquely identifying number generated in `Composite.create` by `Common.nextId`. * * @property id * @type number */ /** * A `String` denoting the type of object. * * @property type * @type string * @default "constraint" * @readOnly */ /** * An arbitrary `String` name to help the user identify and manage bodies. * * @property label * @type string * @default "Constraint" */ /** * An `Object` that defines the rendering properties to be consumed by the module `Matter.Render`. * * @property render * @type object */ /** * A flag that indicates if the constraint should be rendered. * * @property render.visible * @type boolean * @default true */ /** * A `Number` that defines the line width to use when rendering the constraint outline. * A value of `0` means no outline will be rendered. * * @property render.lineWidth * @type number * @default 2 */ /** * A `String` that defines the stroke style to use when rendering the constraint outline. * It is the same as when using a canvas, so it accepts CSS style property values. * * @property render.strokeStyle * @type string * @default a random colour */ /** * A `String` that defines the constraint rendering type. * The possible values are 'line', 'pin', 'spring'. * An appropriate render type will be automatically chosen unless one is given in options. * * @property render.type * @type string * @default 'line' */ /** * A `Boolean` that defines if the constraint's anchor points should be rendered. * * @property render.anchors * @type boolean * @default true */ /** * The first possible `Body` that this constraint is attached to. * * @property bodyA * @type body * @default null */ /** * The second possible `Body` that this constraint is attached to. * * @property bodyB * @type body * @default null */ /** * A `Vector` that specifies the offset of the constraint from center of the `constraint.bodyA` if defined, otherwise a world-space position. * * @property pointA * @type vector * @default { x: 0, y: 0 } */ /** * A `Vector` that specifies the offset of the constraint from center of the `constraint.bodyB` if defined, otherwise a world-space position. * * @property pointB * @type vector * @default { x: 0, y: 0 } */ /** * A `Number` that specifies the stiffness of the constraint, i.e. the rate at which it returns to its resting `constraint.length`. * A value of `1` means the constraint should be very stiff. * A value of `0.2` means the constraint acts like a soft spring. * * @property stiffness * @type number * @default 1 */ /** * A `Number` that specifies the damping of the constraint, * i.e. the amount of resistance applied to each body based on their velocities to limit the amount of oscillation. * Damping will only be apparent when the constraint also has a very low `stiffness`. * A value of `0.1` means the constraint will apply heavy damping, resulting in little to no oscillation. * A value of `0` means the constraint will apply no damping. * * @property damping * @type number * @default 0 */ /** * A `Number` that specifies the target resting length of the constraint. * It is calculated automatically in `Constraint.create` from initial positions of the `constraint.bodyA` and `constraint.bodyB`. * * @property length * @type number */ /** * An object reserved for storing plugin-specific properties. * * @property plugin * @type {} */ })(); /***/ }), /* 11 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Axes` module contains methods for creating and manipulating sets of axes. * * @class Axes */ var Axes = {}; module.exports = Axes; var Vector = __webpack_require__(2); var Common = __webpack_require__(0); (function() { /** * Creates a new set of axes from the given vertices. * @method fromVertices * @param {vertices} vertices * @return {axes} A new axes from the given vertices */ Axes.fromVertices = function(vertices) { var axes = {}; // find the unique axes, using edge normal gradients for (var i = 0; i < vertices.length; i++) { var j = (i + 1) % vertices.length, normal = Vector.normalise({ x: vertices[j].y - vertices[i].y, y: vertices[i].x - vertices[j].x }), gradient = (normal.y === 0) ? Infinity : (normal.x / normal.y); // limit precision gradient = gradient.toFixed(3).toString(); axes[gradient] = normal; } return Common.values(axes); }; /** * Rotates a set of axes by the given angle. * @method rotate * @param {axes} axes * @param {number} angle */ Axes.rotate = function(axes, angle) { if (angle === 0) return; var cos = Math.cos(angle), sin = Math.sin(angle); for (var i = 0; i < axes.length; i++) { var axis = axes[i], xx; xx = axis.x * cos - axis.y * sin; axis.y = axis.x * sin + axis.y * cos; axis.x = xx; } }; })(); /***/ }), /* 12 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Bodies` module contains factory methods for creating rigid body models * with commonly used body configurations (such as rectangles, circles and other polygons). * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Bodies */ // TODO: true circle bodies var Bodies = {}; module.exports = Bodies; var Vertices = __webpack_require__(3); var Common = __webpack_require__(0); var Body = __webpack_require__(4); var Bounds = __webpack_require__(1); var Vector = __webpack_require__(2); (function() { /** * Creates a new rigid body model with a rectangle hull. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method rectangle * @param {number} x * @param {number} y * @param {number} width * @param {number} height * @param {object} [options] * @return {body} A new rectangle body */ Bodies.rectangle = function(x, y, width, height, options) { options = options || {}; var rectangle = { label: 'Rectangle Body', position: { x: x, y: y }, vertices: Vertices.fromPath('L 0 0 L ' + width + ' 0 L ' + width + ' ' + height + ' L 0 ' + height) }; if (options.chamfer) { var chamfer = options.chamfer; rectangle.vertices = Vertices.chamfer(rectangle.vertices, chamfer.radius, chamfer.quality, chamfer.qualityMin, chamfer.qualityMax); delete options.chamfer; } return Body.create(Common.extend({}, rectangle, options)); }; /** * Creates a new rigid body model with a trapezoid hull. * The `slope` is parameterised as a fraction of `width` and must be < 1 to form a valid trapezoid. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method trapezoid * @param {number} x * @param {number} y * @param {number} width * @param {number} height * @param {number} slope Must be a number < 1. * @param {object} [options] * @return {body} A new trapezoid body */ Bodies.trapezoid = function(x, y, width, height, slope, options) { options = options || {}; if (slope >= 1) { Common.warn('Bodies.trapezoid: slope parameter must be < 1.'); } slope *= 0.5; var roof = (1 - (slope * 2)) * width; var x1 = width * slope, x2 = x1 + roof, x3 = x2 + x1, verticesPath; if (slope < 0.5) { verticesPath = 'L 0 0 L ' + x1 + ' ' + (-height) + ' L ' + x2 + ' ' + (-height) + ' L ' + x3 + ' 0'; } else { verticesPath = 'L 0 0 L ' + x2 + ' ' + (-height) + ' L ' + x3 + ' 0'; } var trapezoid = { label: 'Trapezoid Body', position: { x: x, y: y }, vertices: Vertices.fromPath(verticesPath) }; if (options.chamfer) { var chamfer = options.chamfer; trapezoid.vertices = Vertices.chamfer(trapezoid.vertices, chamfer.radius, chamfer.quality, chamfer.qualityMin, chamfer.qualityMax); delete options.chamfer; } return Body.create(Common.extend({}, trapezoid, options)); }; /** * Creates a new rigid body model with a circle hull. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method circle * @param {number} x * @param {number} y * @param {number} radius * @param {object} [options] * @param {number} [maxSides] * @return {body} A new circle body */ Bodies.circle = function(x, y, radius, options, maxSides) { options = options || {}; var circle = { label: 'Circle Body', circleRadius: radius }; // approximate circles with polygons until true circles implemented in SAT maxSides = maxSides || 25; var sides = Math.ceil(Math.max(10, Math.min(maxSides, radius))); // optimisation: always use even number of sides (half the number of unique axes) if (sides % 2 === 1) sides += 1; return Bodies.polygon(x, y, sides, radius, Common.extend({}, circle, options)); }; /** * Creates a new rigid body model with a regular polygon hull with the given number of sides. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method polygon * @param {number} x * @param {number} y * @param {number} sides * @param {number} radius * @param {object} [options] * @return {body} A new regular polygon body */ Bodies.polygon = function(x, y, sides, radius, options) { options = options || {}; if (sides < 3) return Bodies.circle(x, y, radius, options); var theta = 2 * Math.PI / sides, path = '', offset = theta * 0.5; for (var i = 0; i < sides; i += 1) { var angle = offset + (i * theta), xx = Math.cos(angle) * radius, yy = Math.sin(angle) * radius; path += 'L ' + xx.toFixed(3) + ' ' + yy.toFixed(3) + ' '; } var polygon = { label: 'Polygon Body', position: { x: x, y: y }, vertices: Vertices.fromPath(path) }; if (options.chamfer) { var chamfer = options.chamfer; polygon.vertices = Vertices.chamfer(polygon.vertices, chamfer.radius, chamfer.quality, chamfer.qualityMin, chamfer.qualityMax); delete options.chamfer; } return Body.create(Common.extend({}, polygon, options)); }; /** * Utility to create a compound body based on set(s) of vertices. * * _Note:_ To optionally enable automatic concave vertices decomposition the [poly-decomp](https://github.com/schteppe/poly-decomp.js) * package must be first installed and provided see `Common.setDecomp`, otherwise the convex hull of each vertex set will be used. * * The resulting vertices are reorientated about their centre of mass, * and offset such that `body.position` corresponds to this point. * * The resulting offset may be found if needed by subtracting `body.bounds` from the original input bounds. * To later move the centre of mass see `Body.setCentre`. * * Note that automatic conconcave decomposition results are not always optimal. * For best results, simplify the input vertices as much as possible first. * By default this function applies some addtional simplification to help. * * Some outputs may also require further manual processing afterwards to be robust. * In particular some parts may need to be overlapped to avoid collision gaps. * Thin parts and sharp points should be avoided or removed where possible. * * The options parameter object specifies any `Matter.Body` properties you wish to override the defaults. * * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method fromVertices * @param {number} x * @param {number} y * @param {array} vertexSets One or more arrays of vertex points e.g. `[[{ x: 0, y: 0 }...], ...]`. * @param {object} [options] The body options. * @param {bool} [flagInternal=false] Optionally marks internal edges with `isInternal`. * @param {number} [removeCollinear=0.01] Threshold when simplifying vertices along the same edge. * @param {number} [minimumArea=10] Threshold when removing small parts. * @param {number} [removeDuplicatePoints=0.01] Threshold when simplifying nearby vertices. * @return {body} */ Bodies.fromVertices = function(x, y, vertexSets, options, flagInternal, removeCollinear, minimumArea, removeDuplicatePoints) { var decomp = Common.getDecomp(), canDecomp, body, parts, isConvex, isConcave, vertices, i, j, k, v, z; // check decomp is as expected canDecomp = Boolean(decomp && decomp.quickDecomp); options = options || {}; parts = []; flagInternal = typeof flagInternal !== 'undefined' ? flagInternal : false; removeCollinear = typeof removeCollinear !== 'undefined' ? removeCollinear : 0.01; minimumArea = typeof minimumArea !== 'undefined' ? minimumArea : 10; removeDuplicatePoints = typeof removeDuplicatePoints !== 'undefined' ? removeDuplicatePoints : 0.01; // ensure vertexSets is an array of arrays if (!Common.isArray(vertexSets[0])) { vertexSets = [vertexSets]; } for (v = 0; v < vertexSets.length; v += 1) { vertices = vertexSets[v]; isConvex = Vertices.isConvex(vertices); isConcave = !isConvex; if (isConcave && !canDecomp) { Common.warnOnce( 'Bodies.fromVertices: Install the \'poly-decomp\' library and use Common.setDecomp or provide \'decomp\' as a global to decompose concave vertices.' ); } if (isConvex || !canDecomp) { if (isConvex) { vertices = Vertices.clockwiseSort(vertices); } else { // fallback to convex hull when decomposition is not possible vertices = Vertices.hull(vertices); } parts.push({ position: { x: x, y: y }, vertices: vertices }); } else { // initialise a decomposition var concave = vertices.map(function(vertex) { return [vertex.x, vertex.y]; }); // vertices are concave and simple, we can decompose into parts decomp.makeCCW(concave); if (removeCollinear !== false) decomp.removeCollinearPoints(concave, removeCollinear); if (removeDuplicatePoints !== false && decomp.removeDuplicatePoints) decomp.removeDuplicatePoints(concave, removeDuplicatePoints); // use the quick decomposition algorithm (Bayazit) var decomposed = decomp.quickDecomp(concave); // for each decomposed chunk for (i = 0; i < decomposed.length; i++) { var chunk = decomposed[i]; // convert vertices into the correct structure var chunkVertices = chunk.map(function(vertices) { return { x: vertices[0], y: vertices[1] }; }); // skip small chunks if (minimumArea > 0 && Vertices.area(chunkVertices) < minimumArea) continue; // create a compound part parts.push({ position: Vertices.centre(chunkVertices), vertices: chunkVertices }); } } } // create body parts for (i = 0; i < parts.length; i++) { parts[i] = Body.create(Common.extend(parts[i], options)); } // flag internal edges (coincident part edges) if (flagInternal) { var coincident_max_dist = 5; for (i = 0; i < parts.length; i++) { var partA = parts[i]; for (j = i + 1; j < parts.length; j++) { var partB = parts[j]; if (Bounds.overlaps(partA.bounds, partB.bounds)) { var pav = partA.vertices, pbv = partB.vertices; // iterate vertices of both parts for (k = 0; k < partA.vertices.length; k++) { for (z = 0; z < partB.vertices.length; z++) { // find distances between the vertices var da = Vector.magnitudeSquared(Vector.sub(pav[(k + 1) % pav.length], pbv[z])), db = Vector.magnitudeSquared(Vector.sub(pav[k], pbv[(z + 1) % pbv.length])); // if both vertices are very close, consider the edge concident (internal) if (da < coincident_max_dist && db < coincident_max_dist) { pav[k].isInternal = true; pbv[z].isInternal = true; } } } } } } } if (parts.length > 1) { // create the parent body to be returned, that contains generated compound parts body = Body.create(Common.extend({ parts: parts.slice(0) }, options)); // offset such that body.position is at the centre off mass Body.setPosition(body, { x: x, y: y }); return body; } else { return parts[0]; } }; })(); /***/ }), /* 13 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Detector` module contains methods for efficiently detecting collisions between a list of bodies using a broadphase algorithm. * * @class Detector */ var Detector = {}; module.exports = Detector; var Common = __webpack_require__(0); var Collision = __webpack_require__(8); (function() { /** * Creates a new collision detector. * @method create * @param {} options * @return {detector} A new collision detector */ Detector.create = function(options) { var defaults = { bodies: [], collisions: [], pairs: null }; return Common.extend(defaults, options); }; /** * Sets the list of bodies in the detector. * @method setBodies * @param {detector} detector * @param {body[]} bodies */ Detector.setBodies = function(detector, bodies) { detector.bodies = bodies.slice(0); }; /** * Clears the detector including its list of bodies. * @method clear * @param {detector} detector */ Detector.clear = function(detector) { detector.bodies = []; detector.collisions = []; }; /** * Efficiently finds all collisions among all the bodies in `detector.bodies` using a broadphase algorithm. * * _Note:_ The specific ordering of collisions returned is not guaranteed between releases and may change for performance reasons. * If a specific ordering is required then apply a sort to the resulting array. * @method collisions * @param {detector} detector * @return {collision[]} collisions */ Detector.collisions = function(detector) { var pairs = detector.pairs, bodies = detector.bodies, bodiesLength = bodies.length, canCollide = Detector.canCollide, collides = Collision.collides, collisions = detector.collisions, collisionIndex = 0, i, j; bodies.sort(Detector._compareBoundsX); for (i = 0; i < bodiesLength; i++) { var bodyA = bodies[i], boundsA = bodyA.bounds, boundXMax = bodyA.bounds.max.x, boundYMax = bodyA.bounds.max.y, boundYMin = bodyA.bounds.min.y, bodyAStatic = bodyA.isStatic || bodyA.isSleeping, partsALength = bodyA.parts.length, partsASingle = partsALength === 1; for (j = i + 1; j < bodiesLength; j++) { var bodyB = bodies[j], boundsB = bodyB.bounds; if (boundsB.min.x > boundXMax) { break; } if (boundYMax < boundsB.min.y || boundYMin > boundsB.max.y) { continue; } if (bodyAStatic && (bodyB.isStatic || bodyB.isSleeping)) { continue; } if (!canCollide(bodyA.collisionFilter, bodyB.collisionFilter)) { continue; } var partsBLength = bodyB.parts.length; if (partsASingle && partsBLength === 1) { var collision = collides(bodyA, bodyB, pairs); if (collision) { collisions[collisionIndex++] = collision; } } else { var partsAStart = partsALength > 1 ? 1 : 0, partsBStart = partsBLength > 1 ? 1 : 0; for (var k = partsAStart; k < partsALength; k++) { var partA = bodyA.parts[k], boundsA = partA.bounds; for (var z = partsBStart; z < partsBLength; z++) { var partB = bodyB.parts[z], boundsB = partB.bounds; if (boundsA.min.x > boundsB.max.x || boundsA.max.x < boundsB.min.x || boundsA.max.y < boundsB.min.y || boundsA.min.y > boundsB.max.y) { continue; } var collision = collides(partA, partB, pairs); if (collision) { collisions[collisionIndex++] = collision; } } } } } } if (collisions.length !== collisionIndex) { collisions.length = collisionIndex; } return collisions; }; /** * Returns `true` if both supplied collision filters will allow a collision to occur. * See `body.collisionFilter` for more information. * @method canCollide * @param {} filterA * @param {} filterB * @return {bool} `true` if collision can occur */ Detector.canCollide = function(filterA, filterB) { if (filterA.group === filterB.group && filterA.group !== 0) return filterA.group > 0; return (filterA.mask & filterB.category) !== 0 && (filterB.mask & filterA.category) !== 0; }; /** * The comparison function used in the broadphase algorithm. * Returns the signed delta of the bodies bounds on the x-axis. * @private * @method _sortCompare * @param {body} bodyA * @param {body} bodyB * @return {number} The signed delta used for sorting */ Detector._compareBoundsX = function(bodyA, bodyB) { return bodyA.bounds.min.x - bodyB.bounds.min.x; }; /* * * Properties Documentation * */ /** * The array of `Matter.Body` between which the detector finds collisions. * * _Note:_ The order of bodies in this array _is not fixed_ and will be continually managed by the detector. * @property bodies * @type body[] * @default [] */ /** * The array of `Matter.Collision` found in the last call to `Detector.collisions` on this detector. * @property collisions * @type collision[] * @default [] */ /** * Optional. A `Matter.Pairs` object from which previous collision objects may be reused. Intended for internal `Matter.Engine` usage. * @property pairs * @type {pairs|null} * @default null */ })(); /***/ }), /* 14 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Mouse` module contains methods for creating and manipulating mouse inputs. * * @class Mouse */ var Mouse = {}; module.exports = Mouse; var Common = __webpack_require__(0); (function() { /** * Creates a mouse input. * @method create * @param {HTMLElement} element * @return {mouse} A new mouse */ Mouse.create = function(element) { var mouse = {}; if (!element) { Common.log('Mouse.create: element was undefined, defaulting to document.body', 'warn'); } mouse.element = element || document.body; mouse.absolute = { x: 0, y: 0 }; mouse.position = { x: 0, y: 0 }; mouse.mousedownPosition = { x: 0, y: 0 }; mouse.mouseupPosition = { x: 0, y: 0 }; mouse.offset = { x: 0, y: 0 }; mouse.scale = { x: 1, y: 1 }; mouse.wheelDelta = 0; mouse.button = -1; mouse.pixelRatio = parseInt(mouse.element.getAttribute('data-pixel-ratio'), 10) || 1; mouse.sourceEvents = { mousemove: null, mousedown: null, mouseup: null, mousewheel: null }; mouse.mousemove = function(event) { var position = Mouse._getRelativeMousePosition(event, mouse.element, mouse.pixelRatio), touches = event.changedTouches; if (touches) { mouse.button = 0; event.preventDefault(); } mouse.absolute.x = position.x; mouse.absolute.y = position.y; mouse.position.x = mouse.absolute.x * mouse.scale.x + mouse.offset.x; mouse.position.y = mouse.absolute.y * mouse.scale.y + mouse.offset.y; mouse.sourceEvents.mousemove = event; }; mouse.mousedown = function(event) { var position = Mouse._getRelativeMousePosition(event, mouse.element, mouse.pixelRatio), touches = event.changedTouches; if (touches) { mouse.button = 0; event.preventDefault(); } else { mouse.button = event.button; } mouse.absolute.x = position.x; mouse.absolute.y = position.y; mouse.position.x = mouse.absolute.x * mouse.scale.x + mouse.offset.x; mouse.position.y = mouse.absolute.y * mouse.scale.y + mouse.offset.y; mouse.mousedownPosition.x = mouse.position.x; mouse.mousedownPosition.y = mouse.position.y; mouse.sourceEvents.mousedown = event; }; mouse.mouseup = function(event) { var position = Mouse._getRelativeMousePosition(event, mouse.element, mouse.pixelRatio), touches = event.changedTouches; if (touches) { event.preventDefault(); } mouse.button = -1; mouse.absolute.x = position.x; mouse.absolute.y = position.y; mouse.position.x = mouse.absolute.x * mouse.scale.x + mouse.offset.x; mouse.position.y = mouse.absolute.y * mouse.scale.y + mouse.offset.y; mouse.mouseupPosition.x = mouse.position.x; mouse.mouseupPosition.y = mouse.position.y; mouse.sourceEvents.mouseup = event; }; mouse.mousewheel = function(event) { mouse.wheelDelta = Math.max(-1, Math.min(1, event.wheelDelta || -event.detail)); event.preventDefault(); mouse.sourceEvents.mousewheel = event; }; Mouse.setElement(mouse, mouse.element); return mouse; }; /** * Sets the element the mouse is bound to (and relative to). * @method setElement * @param {mouse} mouse * @param {HTMLElement} element */ Mouse.setElement = function(mouse, element) { mouse.element = element; element.addEventListener('mousemove', mouse.mousemove, { passive: true }); element.addEventListener('mousedown', mouse.mousedown, { passive: true }); element.addEventListener('mouseup', mouse.mouseup, { passive: true }); element.addEventListener('wheel', mouse.mousewheel, { passive: false }); element.addEventListener('touchmove', mouse.mousemove, { passive: false }); element.addEventListener('touchstart', mouse.mousedown, { passive: false }); element.addEventListener('touchend', mouse.mouseup, { passive: false }); }; /** * Clears all captured source events. * @method clearSourceEvents * @param {mouse} mouse */ Mouse.clearSourceEvents = function(mouse) { mouse.sourceEvents.mousemove = null; mouse.sourceEvents.mousedown = null; mouse.sourceEvents.mouseup = null; mouse.sourceEvents.mousewheel = null; mouse.wheelDelta = 0; }; /** * Sets the mouse position offset. * @method setOffset * @param {mouse} mouse * @param {vector} offset */ Mouse.setOffset = function(mouse, offset) { mouse.offset.x = offset.x; mouse.offset.y = offset.y; mouse.position.x = mouse.absolute.x * mouse.scale.x + mouse.offset.x; mouse.position.y = mouse.absolute.y * mouse.scale.y + mouse.offset.y; }; /** * Sets the mouse position scale. * @method setScale * @param {mouse} mouse * @param {vector} scale */ Mouse.setScale = function(mouse, scale) { mouse.scale.x = scale.x; mouse.scale.y = scale.y; mouse.position.x = mouse.absolute.x * mouse.scale.x + mouse.offset.x; mouse.position.y = mouse.absolute.y * mouse.scale.y + mouse.offset.y; }; /** * Sets the mouse position offset. * @method setPosition * @param {mouse} mouse * @param {IMousePoint} IMousePoint */ // Mouse.setPosition = function(mouse, IMousePoint) { // mouse.position.x = IMousePoint.x; // mouse.position.y = IMousePoint.y; // console.log( mouse.button ); // }; /** * Sets the mouse position offset. * @method setMouseButton * @param {mouse} mouse * @param {number} number */ // Mouse.setMouseButton = function(mouse, number) { // mouse.button = number;; // console.log( mouse.button ); // }; /** * Gets the mouse position relative to an element given a screen pixel ratio. * @method _getRelativeMousePosition * @private * @param {} event * @param {} element * @param {number} pixelRatio * @return {} */ Mouse._getRelativeMousePosition = function(event, element, pixelRatio) { var elementBounds = element.getBoundingClientRect(), rootNode = (document.documentElement || document.body.parentNode || document.body), scrollX = (window.pageXOffset !== undefined) ? window.pageXOffset : rootNode.scrollLeft, scrollY = (window.pageYOffset !== undefined) ? window.pageYOffset : rootNode.scrollTop, touches = event.changedTouches, x, y; if (touches) { x = touches[0].pageX - elementBounds.left - scrollX; y = touches[0].pageY - elementBounds.top - scrollY; } else { x = event.pageX - elementBounds.left - scrollX; y = event.pageY - elementBounds.top - scrollY; } return { x: x / (element.clientWidth / (element.width || element.clientWidth) * pixelRatio), y: y / (element.clientHeight / (element.height || element.clientHeight) * pixelRatio) }; }; })(); /***/ }), /* 15 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Plugin` module contains functions for registering and installing plugins on modules. * * @class Plugin */ var Plugin = {}; module.exports = Plugin; var Common = __webpack_require__(0); (function() { Plugin._registry = {}; /** * Registers a plugin object so it can be resolved later by name. * @method register * @param plugin {} The plugin to register. * @return {object} The plugin. */ Plugin.register = function(plugin) { if (!Plugin.isPlugin(plugin)) { Common.warn('Plugin.register:', Plugin.toString(plugin), 'does not implement all required fields.'); } if (plugin.name in Plugin._registry) { var registered = Plugin._registry[plugin.name], pluginVersion = Plugin.versionParse(plugin.version).number, registeredVersion = Plugin.versionParse(registered.version).number; if (pluginVersion > registeredVersion) { Common.warn('Plugin.register:', Plugin.toString(registered), 'was upgraded to', Plugin.toString(plugin)); Plugin._registry[plugin.name] = plugin; } else if (pluginVersion < registeredVersion) { Common.warn('Plugin.register:', Plugin.toString(registered), 'can not be downgraded to', Plugin.toString(plugin)); } else if (plugin !== registered) { Common.warn('Plugin.register:', Plugin.toString(plugin), 'is already registered to different plugin object'); } } else { Plugin._registry[plugin.name] = plugin; } return plugin; }; /** * Resolves a dependency to a plugin object from the registry if it exists. * The `dependency` may contain a version, but only the name matters when resolving. * @method resolve * @param dependency {string} The dependency. * @return {object} The plugin if resolved, otherwise `undefined`. */ Plugin.resolve = function(dependency) { return Plugin._registry[Plugin.dependencyParse(dependency).name]; }; /** * Returns a pretty printed plugin name and version. * @method toString * @param plugin {} The plugin. * @return {string} Pretty printed plugin name and version. */ Plugin.toString = function(plugin) { return typeof plugin === 'string' ? plugin : (plugin.name || 'anonymous') + '@' + (plugin.version || plugin.range || '0.0.0'); }; /** * Returns `true` if the object meets the minimum standard to be considered a plugin. * This means it must define the following properties: * - `name` * - `version` * - `install` * @method isPlugin * @param obj {} The obj to test. * @return {boolean} `true` if the object can be considered a plugin otherwise `false`. */ Plugin.isPlugin = function(obj) { return obj && obj.name && obj.version && obj.install; }; /** * Returns `true` if a plugin with the given `name` been installed on `module`. * @method isUsed * @param module {} The module. * @param name {string} The plugin name. * @return {boolean} `true` if a plugin with the given `name` been installed on `module`, otherwise `false`. */ Plugin.isUsed = function(module, name) { return module.used.indexOf(name) > -1; }; /** * Returns `true` if `plugin.for` is applicable to `module` by comparing against `module.name` and `module.version`. * If `plugin.for` is not specified then it is assumed to be applicable. * The value of `plugin.for` is a string of the format `'module-name'` or `'module-name@version'`. * @method isFor * @param plugin {} The plugin. * @param module {} The module. * @return {boolean} `true` if `plugin.for` is applicable to `module`, otherwise `false`. */ Plugin.isFor = function(plugin, module) { var parsed = plugin.for && Plugin.dependencyParse(plugin.for); return !plugin.for || (module.name === parsed.name && Plugin.versionSatisfies(module.version, parsed.range)); }; /** * Installs the plugins by calling `plugin.install` on each plugin specified in `plugins` if passed, otherwise `module.uses`. * For installing plugins on `Matter` see the convenience function `Matter.use`. * Plugins may be specified either by their name or a reference to the plugin object. * Plugins themselves may specify further dependencies, but each plugin is installed only once. * Order is important, a topological sort is performed to find the best resulting order of installation. * This sorting attempts to satisfy every dependency's requested ordering, but may not be exact in all cases. * This function logs the resulting status of each dependency in the console, along with any warnings. * - A green tick ✅ indicates a dependency was resolved and installed. * - An orange diamond 🔶 indicates a dependency was resolved but a warning was thrown for it or one if its dependencies. * - A red cross ❌ indicates a dependency could not be resolved. * Avoid calling this function multiple times on the same module unless you intend to manually control installation order. * @method use * @param module {} The module install plugins on. * @param [plugins=module.uses] {} The plugins to install on module (optional, defaults to `module.uses`). */ Plugin.use = function(module, plugins) { module.uses = (module.uses || []).concat(plugins || []); if (module.uses.length === 0) { Common.warn('Plugin.use:', Plugin.toString(module), 'does not specify any dependencies to install.'); return; } var dependencies = Plugin.dependencies(module), sortedDependencies = Common.topologicalSort(dependencies), status = []; for (var i = 0; i < sortedDependencies.length; i += 1) { if (sortedDependencies[i] === module.name) { continue; } var plugin = Plugin.resolve(sortedDependencies[i]); if (!plugin) { status.push('❌ ' + sortedDependencies[i]); continue; } if (Plugin.isUsed(module, plugin.name)) { continue; } if (!Plugin.isFor(plugin, module)) { Common.warn('Plugin.use:', Plugin.toString(plugin), 'is for', plugin.for, 'but installed on', Plugin.toString(module) + '.'); plugin._warned = true; } if (plugin.install) { plugin.install(module); } else { Common.warn('Plugin.use:', Plugin.toString(plugin), 'does not specify an install function.'); plugin._warned = true; } if (plugin._warned) { status.push('🔶 ' + Plugin.toString(plugin)); delete plugin._warned; } else { status.push('✅ ' + Plugin.toString(plugin)); } module.used.push(plugin.name); } if (status.length > 0) { Common.info(status.join(' ')); } }; /** * Recursively finds all of a module's dependencies and returns a flat dependency graph. * @method dependencies * @param module {} The module. * @return {object} A dependency graph. */ Plugin.dependencies = function(module, tracked) { var parsedBase = Plugin.dependencyParse(module), name = parsedBase.name; tracked = tracked || {}; if (name in tracked) { return; } module = Plugin.resolve(module) || module; tracked[name] = Common.map(module.uses || [], function(dependency) { if (Plugin.isPlugin(dependency)) { Plugin.register(dependency); } var parsed = Plugin.dependencyParse(dependency), resolved = Plugin.resolve(dependency); if (resolved && !Plugin.versionSatisfies(resolved.version, parsed.range)) { Common.warn( 'Plugin.dependencies:', Plugin.toString(resolved), 'does not satisfy', Plugin.toString(parsed), 'used by', Plugin.toString(parsedBase) + '.' ); resolved._warned = true; module._warned = true; } else if (!resolved) { Common.warn( 'Plugin.dependencies:', Plugin.toString(dependency), 'used by', Plugin.toString(parsedBase), 'could not be resolved.' ); module._warned = true; } return parsed.name; }); for (var i = 0; i < tracked[name].length; i += 1) { Plugin.dependencies(tracked[name][i], tracked); } return tracked; }; /** * Parses a dependency string into its components. * The `dependency` is a string of the format `'module-name'` or `'module-name@version'`. * See documentation for `Plugin.versionParse` for a description of the format. * This function can also handle dependencies that are already resolved (e.g. a module object). * @method dependencyParse * @param dependency {string} The dependency of the format `'module-name'` or `'module-name@version'`. * @return {object} The dependency parsed into its components. */ Plugin.dependencyParse = function(dependency) { if (Common.isString(dependency)) { var pattern = /^[\w-]+(@(\*|[\^~]?\d+\.\d+\.\d+(-[0-9A-Za-z-+]+)?))?$/; if (!pattern.test(dependency)) { Common.warn('Plugin.dependencyParse:', dependency, 'is not a valid dependency string.'); } return { name: dependency.split('@')[0], range: dependency.split('@')[1] || '*' }; } return { name: dependency.name, range: dependency.range || dependency.version }; }; /** * Parses a version string into its components. * Versions are strictly of the format `x.y.z` (as in [semver](http://semver.org/)). * Versions may optionally have a prerelease tag in the format `x.y.z-alpha`. * Ranges are a strict subset of [npm ranges](https://docs.npmjs.com/misc/semver#advanced-range-syntax). * Only the following range types are supported: * - Tilde ranges e.g. `~1.2.3` * - Caret ranges e.g. `^1.2.3` * - Greater than ranges e.g. `>1.2.3` * - Greater than or equal ranges e.g. `>=1.2.3` * - Exact version e.g. `1.2.3` * - Any version `*` * @method versionParse * @param range {string} The version string. * @return {object} The version range parsed into its components. */ Plugin.versionParse = function(range) { var pattern = /^(\*)|(\^|~|>=|>)?\s*((\d+)\.(\d+)\.(\d+))(-[0-9A-Za-z-+]+)?$/; if (!pattern.test(range)) { Common.warn('Plugin.versionParse:', range, 'is not a valid version or range.'); } var parts = pattern.exec(range); var major = Number(parts[4]); var minor = Number(parts[5]); var patch = Number(parts[6]); return { isRange: Boolean(parts[1] || parts[2]), version: parts[3], range: range, operator: parts[1] || parts[2] || '', major: major, minor: minor, patch: patch, parts: [major, minor, patch], prerelease: parts[7], number: major * 1e8 + minor * 1e4 + patch }; }; /** * Returns `true` if `version` satisfies the given `range`. * See documentation for `Plugin.versionParse` for a description of the format. * If a version or range is not specified, then any version (`*`) is assumed to satisfy. * @method versionSatisfies * @param version {string} The version string. * @param range {string} The range string. * @return {boolean} `true` if `version` satisfies `range`, otherwise `false`. */ Plugin.versionSatisfies = function(version, range) { range = range || '*'; var r = Plugin.versionParse(range), v = Plugin.versionParse(version); if (r.isRange) { if (r.operator === '*' || version === '*') { return true; } if (r.operator === '>') { return v.number > r.number; } if (r.operator === '>=') { return v.number >= r.number; } if (r.operator === '~') { return v.major === r.major && v.minor === r.minor && v.patch >= r.patch; } if (r.operator === '^') { if (r.major > 0) { return v.major === r.major && v.number >= r.number; } if (r.minor > 0) { return v.minor === r.minor && v.patch >= r.patch; } return v.patch === r.patch; } } return version === range || version === '*'; }; })(); /***/ }), /* 16 */ /***/ (function(module, exports) { /** * The `Matter.Contact` module contains methods for creating and manipulating collision contacts. * * @class Contact */ var Contact = {}; module.exports = Contact; (function() { /** * Creates a new contact. * @method create * @param {vertex} [vertex] * @return {contact} A new contact */ Contact.create = function(vertex) { return { vertex: vertex, normalImpulse: 0, tangentImpulse: 0 }; }; })(); /***/ }), /* 17 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Engine` module contains methods for creating and manipulating engines. * An engine is a controller that manages updating the simulation of the world. * See `Matter.Runner` for an optional game loop utility. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Engine */ var Engine = {}; module.exports = Engine; var Sleeping = __webpack_require__(7); var Resolver = __webpack_require__(18); var Detector = __webpack_require__(13); var Pairs = __webpack_require__(19); var Events = __webpack_require__(5); var Composite = __webpack_require__(6); var Constraint = __webpack_require__(10); var Common = __webpack_require__(0); var Body = __webpack_require__(4); (function() { Engine._deltaMax = 1000 / 60; /** * Creates a new engine. The options parameter is an object that specifies any properties you wish to override the defaults. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {object} [options] * @return {engine} engine */ Engine.create = function(options) { options = options || {}; var defaults = { positionIterations: 6, velocityIterations: 4, constraintIterations: 2, enableSleeping: false, events: [], plugin: {}, gravity: { x: 0, y: 1, scale: 0.001 }, timing: { timestamp: 0, timeScale: 1, lastDelta: 0, lastElapsed: 0, lastUpdatesPerFrame: 0 } }; var engine = Common.extend(defaults, options); engine.world = options.world || Composite.create({ label: 'World' }); engine.pairs = options.pairs || Pairs.create(); engine.detector = options.detector || Detector.create(); engine.detector.pairs = engine.pairs; // for temporary back compatibility only engine.grid = { buckets: [] }; engine.world.gravity = engine.gravity; engine.broadphase = engine.grid; engine.metrics = {}; return engine; }; /** * Moves the simulation forward in time by `delta` milliseconds. * Triggers `beforeUpdate`, `beforeSolve` and `afterUpdate` events. * Triggers `collisionStart`, `collisionActive` and `collisionEnd` events. * @method update * @param {engine} engine * @param {number} [delta=16.666] */ Engine.update = function(engine, delta) { var startTime = Common.now(); var world = engine.world, detector = engine.detector, pairs = engine.pairs, timing = engine.timing, timestamp = timing.timestamp, i; // warn if high delta if (delta > Engine._deltaMax) { Common.warnOnce( 'Matter.Engine.update: delta argument is recommended to be less than or equal to', Engine._deltaMax.toFixed(3), 'ms.' ); } delta = typeof delta !== 'undefined' ? delta : Common._baseDelta; delta *= timing.timeScale; // increment timestamp timing.timestamp += delta; timing.lastDelta = delta; // create an event object var event = { timestamp: timing.timestamp, delta: delta }; Events.trigger(engine, 'beforeUpdate', event); // get all bodies and all constraints in the world var allBodies = Composite.allBodies(world), allConstraints = Composite.allConstraints(world); // if the world has changed if (world.isModified) { // update the detector bodies Detector.setBodies(detector, allBodies); // reset all composite modified flags Composite.setModified(world, false, false, true); } // update sleeping if enabled if (engine.enableSleeping) Sleeping.update(allBodies, delta); // apply gravity to all bodies Engine._bodiesApplyGravity(allBodies, engine.gravity); // update all body position and rotation by integration if (delta > 0) { Engine._bodiesUpdate(allBodies, delta); } Events.trigger(engine, 'beforeSolve', event); // update all constraints (first pass) Constraint.preSolveAll(allBodies); for (i = 0; i < engine.constraintIterations; i++) { Constraint.solveAll(allConstraints, delta); } Constraint.postSolveAll(allBodies); // find all collisions var collisions = Detector.collisions(detector); // update collision pairs Pairs.update(pairs, collisions, timestamp); // wake up bodies involved in collisions if (engine.enableSleeping) Sleeping.afterCollisions(pairs.list); // trigger collision events if (pairs.collisionStart.length > 0) { Events.trigger(engine, 'collisionStart', { pairs: pairs.collisionStart, timestamp: timing.timestamp, delta: delta }); } // iteratively resolve position between collisions var positionDamping = Common.clamp(20 / engine.positionIterations, 0, 1); Resolver.preSolvePosition(pairs.list); for (i = 0; i < engine.positionIterations; i++) { Resolver.solvePosition(pairs.list, delta, positionDamping); } Resolver.postSolvePosition(allBodies); // update all constraints (second pass) Constraint.preSolveAll(allBodies); for (i = 0; i < engine.constraintIterations; i++) { Constraint.solveAll(allConstraints, delta); } Constraint.postSolveAll(allBodies); // iteratively resolve velocity between collisions Resolver.preSolveVelocity(pairs.list); for (i = 0; i < engine.velocityIterations; i++) { Resolver.solveVelocity(pairs.list, delta); } // update body speed and velocity properties Engine._bodiesUpdateVelocities(allBodies); // trigger collision events if (pairs.collisionActive.length > 0) { Events.trigger(engine, 'collisionActive', { pairs: pairs.collisionActive, timestamp: timing.timestamp, delta: delta }); } if (pairs.collisionEnd.length > 0) { Events.trigger(engine, 'collisionEnd', { pairs: pairs.collisionEnd, timestamp: timing.timestamp, delta: delta }); } // clear force buffers Engine._bodiesClearForces(allBodies); Events.trigger(engine, 'afterUpdate', event); // log the time elapsed computing this update engine.timing.lastElapsed = Common.now() - startTime; return engine; }; /** * Merges two engines by keeping the configuration of `engineA` but replacing the world with the one from `engineB`. * @method merge * @param {engine} engineA * @param {engine} engineB */ Engine.merge = function(engineA, engineB) { Common.extend(engineA, engineB); if (engineB.world) { engineA.world = engineB.world; Engine.clear(engineA); var bodies = Composite.allBodies(engineA.world); for (var i = 0; i < bodies.length; i++) { var body = bodies[i]; Sleeping.set(body, false); body.id = Common.nextId(); } } }; /** * Clears the engine pairs and detector. * @method clear * @param {engine} engine */ Engine.clear = function(engine) { Pairs.clear(engine.pairs); Detector.clear(engine.detector); }; /** * Zeroes the `body.force` and `body.torque` force buffers. * @method _bodiesClearForces * @private * @param {body[]} bodies */ Engine._bodiesClearForces = function(bodies) { var bodiesLength = bodies.length; for (var i = 0; i < bodiesLength; i++) { var body = bodies[i]; // reset force buffers body.force.x = 0; body.force.y = 0; body.torque = 0; } }; /** * Applies gravitational acceleration to all `bodies`. * This models a [uniform gravitational field](https://en.wikipedia.org/wiki/Gravity_of_Earth), similar to near the surface of a planet. * * @method _bodiesApplyGravity * @private * @param {body[]} bodies * @param {vector} gravity */ Engine._bodiesApplyGravity = function(bodies, gravity) { var gravityScale = typeof gravity.scale !== 'undefined' ? gravity.scale : 0.001, bodiesLength = bodies.length; if ((gravity.x === 0 && gravity.y === 0) || gravityScale === 0) { return; } for (var i = 0; i < bodiesLength; i++) { var body = bodies[i]; if (body.isStatic || body.isSleeping) continue; // add the resultant force of gravity body.force.y += body.mass * gravity.y * gravityScale; body.force.x += body.mass * gravity.x * gravityScale; } }; /** * Applies `Body.update` to all given `bodies`. * @method _bodiesUpdate * @private * @param {body[]} bodies * @param {number} delta The amount of time elapsed between updates */ Engine._bodiesUpdate = function(bodies, delta) { var bodiesLength = bodies.length; for (var i = 0; i < bodiesLength; i++) { var body = bodies[i]; if (body.isStatic || body.isSleeping) continue; Body.update(body, delta); } }; /** * Applies `Body.updateVelocities` to all given `bodies`. * @method _bodiesUpdateVelocities * @private * @param {body[]} bodies */ Engine._bodiesUpdateVelocities = function(bodies) { var bodiesLength = bodies.length; for (var i = 0; i < bodiesLength; i++) { Body.updateVelocities(bodies[i]); } }; /** * A deprecated alias for `Runner.run`, use `Matter.Runner.run(engine)` instead and see `Matter.Runner` for more information. * @deprecated use Matter.Runner.run(engine) instead * @method run * @param {engine} engine */ /** * Fired just before an update * * @event beforeUpdate * @param {object} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {number} event.delta The delta time in milliseconds value used in the update * @param {engine} event.source The source object of the event * @param {string} event.name The name of the event */ /** * Fired after bodies updated based on their velocity and forces, but before any collision detection, constraints and resolving etc. * * @event beforeSolve * @param {object} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {number} event.delta The delta time in milliseconds value used in the update * @param {engine} event.source The source object of the event * @param {string} event.name The name of the event */ /** * Fired after engine update and all collision events * * @event afterUpdate * @param {object} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {number} event.delta The delta time in milliseconds value used in the update * @param {engine} event.source The source object of the event * @param {string} event.name The name of the event */ /** * Fired after engine update, provides a list of all pairs that have started to collide in the current tick (if any) * * @event collisionStart * @param {object} event An event object * @param {pair[]} event.pairs List of affected pairs * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {number} event.delta The delta time in milliseconds value used in the update * @param {engine} event.source The source object of the event * @param {string} event.name The name of the event */ /** * Fired after engine update, provides a list of all pairs that are colliding in the current tick (if any) * * @event collisionActive * @param {object} event An event object * @param {pair[]} event.pairs List of affected pairs * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {number} event.delta The delta time in milliseconds value used in the update * @param {engine} event.source The source object of the event * @param {string} event.name The name of the event */ /** * Fired after engine update, provides a list of all pairs that have ended collision in the current tick (if any) * * @event collisionEnd * @param {object} event An event object * @param {pair[]} event.pairs List of affected pairs * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {number} event.delta The delta time in milliseconds value used in the update * @param {engine} event.source The source object of the event * @param {string} event.name The name of the event */ /* * * Properties Documentation * */ /** * An integer `Number` that specifies the number of position iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * * @property positionIterations * @type number * @default 6 */ /** * An integer `Number` that specifies the number of velocity iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * * @property velocityIterations * @type number * @default 4 */ /** * An integer `Number` that specifies the number of constraint iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * The default value of `2` is usually very adequate. * * @property constraintIterations * @type number * @default 2 */ /** * A flag that specifies whether the engine should allow sleeping via the `Matter.Sleeping` module. * Sleeping can improve stability and performance, but often at the expense of accuracy. * * @property enableSleeping * @type boolean * @default false */ /** * An `Object` containing properties regarding the timing systems of the engine. * * @property timing * @type object */ /** * A `Number` that specifies the global scaling factor of time for all bodies. * A value of `0` freezes the simulation. * A value of `0.1` gives a slow-motion effect. * A value of `1.2` gives a speed-up effect. * * @property timing.timeScale * @type number * @default 1 */ /** * A `Number` that specifies the current simulation-time in milliseconds starting from `0`. * It is incremented on every `Engine.update` by the given `delta` argument. * * @property timing.timestamp * @type number * @default 0 */ /** * A `Number` that represents the total execution time elapsed during the last `Engine.update` in milliseconds. * It is updated by timing from the start of the last `Engine.update` call until it ends. * * This value will also include the total execution time of all event handlers directly or indirectly triggered by the engine update. * * @property timing.lastElapsed * @type number * @default 0 */ /** * A `Number` that represents the `delta` value used in the last engine update. * * @property timing.lastDelta * @type number * @default 0 */ /** * A `Matter.Detector` instance. * * @property detector * @type detector * @default a Matter.Detector instance */ /** * A `Matter.Grid` instance. * * @deprecated replaced by `engine.detector` * @property grid * @type grid * @default a Matter.Grid instance */ /** * Replaced by and now alias for `engine.grid`. * * @deprecated replaced by `engine.detector` * @property broadphase * @type grid * @default a Matter.Grid instance */ /** * The root `Matter.Composite` instance that will contain all bodies, constraints and other composites to be simulated by this engine. * * @property world * @type composite * @default a Matter.Composite instance */ /** * An object reserved for storing plugin-specific properties. * * @property plugin * @type {} */ /** * An optional gravitational acceleration applied to all bodies in `engine.world` on every update. * * This models a [uniform gravitational field](https://en.wikipedia.org/wiki/Gravity_of_Earth), similar to near the surface of a planet. For gravity in other contexts, disable this and apply forces as needed. * * To disable set the `scale` component to `0`. * * This is split into three components for ease of use: * a normalised direction (`x` and `y`) and magnitude (`scale`). * * @property gravity * @type object */ /** * The gravitational direction normal `x` component, to be multiplied by `gravity.scale`. * * @property gravity.x * @type object * @default 0 */ /** * The gravitational direction normal `y` component, to be multiplied by `gravity.scale`. * * @property gravity.y * @type object * @default 1 */ /** * The magnitude of the gravitational acceleration. * * @property gravity.scale * @type object * @default 0.001 */ })(); /***/ }), /* 18 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Resolver` module contains methods for resolving collision pairs. * * @class Resolver */ var Resolver = {}; module.exports = Resolver; var Vertices = __webpack_require__(3); var Common = __webpack_require__(0); var Bounds = __webpack_require__(1); (function() { Resolver._restingThresh = 2; Resolver._restingThreshTangent = Math.sqrt(6); Resolver._positionDampen = 0.9; Resolver._positionWarming = 0.8; Resolver._frictionNormalMultiplier = 5; Resolver._frictionMaxStatic = Number.MAX_VALUE; /** * Prepare pairs for position solving. * @method preSolvePosition * @param {pair[]} pairs */ Resolver.preSolvePosition = function(pairs) { var i, pair, contactCount, pairsLength = pairs.length; // find total contacts on each body for (i = 0; i < pairsLength; i++) { pair = pairs[i]; if (!pair.isActive) continue; contactCount = pair.contactCount; pair.collision.parentA.totalContacts += contactCount; pair.collision.parentB.totalContacts += contactCount; } }; /** * Find a solution for pair positions. * @method solvePosition * @param {pair[]} pairs * @param {number} delta * @param {number} [damping=1] */ Resolver.solvePosition = function(pairs, delta, damping) { var i, pair, collision, bodyA, bodyB, normal, contactShare, positionImpulse, positionDampen = Resolver._positionDampen * (damping || 1), slopDampen = Common.clamp(delta / Common._baseDelta, 0, 1), pairsLength = pairs.length; // find impulses required to resolve penetration for (i = 0; i < pairsLength; i++) { pair = pairs[i]; if (!pair.isActive || pair.isSensor) continue; collision = pair.collision; bodyA = collision.parentA; bodyB = collision.parentB; normal = collision.normal; // get current separation between body edges involved in collision pair.separation = collision.depth + normal.x * (bodyB.positionImpulse.x - bodyA.positionImpulse.x) + normal.y * (bodyB.positionImpulse.y - bodyA.positionImpulse.y); } for (i = 0; i < pairsLength; i++) { pair = pairs[i]; if (!pair.isActive || pair.isSensor) continue; collision = pair.collision; bodyA = collision.parentA; bodyB = collision.parentB; normal = collision.normal; positionImpulse = pair.separation - pair.slop * slopDampen; if (bodyA.isStatic || bodyB.isStatic) positionImpulse *= 2; if (!(bodyA.isStatic || bodyA.isSleeping)) { contactShare = positionDampen / bodyA.totalContacts; bodyA.positionImpulse.x += normal.x * positionImpulse * contactShare; bodyA.positionImpulse.y += normal.y * positionImpulse * contactShare; } if (!(bodyB.isStatic || bodyB.isSleeping)) { contactShare = positionDampen / bodyB.totalContacts; bodyB.positionImpulse.x -= normal.x * positionImpulse * contactShare; bodyB.positionImpulse.y -= normal.y * positionImpulse * contactShare; } } }; /** * Apply position resolution. * @method postSolvePosition * @param {body[]} bodies */ Resolver.postSolvePosition = function(bodies) { var positionWarming = Resolver._positionWarming, bodiesLength = bodies.length, verticesTranslate = Vertices.translate, boundsUpdate = Bounds.update; for (var i = 0; i < bodiesLength; i++) { var body = bodies[i], positionImpulse = body.positionImpulse, positionImpulseX = positionImpulse.x, positionImpulseY = positionImpulse.y, velocity = body.velocity; // reset contact count body.totalContacts = 0; if (positionImpulseX !== 0 || positionImpulseY !== 0) { // update body geometry for (var j = 0; j < body.parts.length; j++) { var part = body.parts[j]; verticesTranslate(part.vertices, positionImpulse); boundsUpdate(part.bounds, part.vertices, velocity); part.position.x += positionImpulseX; part.position.y += positionImpulseY; } // move the body without changing velocity body.positionPrev.x += positionImpulseX; body.positionPrev.y += positionImpulseY; if (positionImpulseX * velocity.x + positionImpulseY * velocity.y < 0) { // reset cached impulse if the body has velocity along it positionImpulse.x = 0; positionImpulse.y = 0; } else { // warm the next iteration positionImpulse.x *= positionWarming; positionImpulse.y *= positionWarming; } } } }; /** * Prepare pairs for velocity solving. * @method preSolveVelocity * @param {pair[]} pairs */ Resolver.preSolveVelocity = function(pairs) { var pairsLength = pairs.length, i, j; for (i = 0; i < pairsLength; i++) { var pair = pairs[i]; if (!pair.isActive || pair.isSensor) continue; var contacts = pair.contacts, contactCount = pair.contactCount, collision = pair.collision, bodyA = collision.parentA, bodyB = collision.parentB, normal = collision.normal, tangent = collision.tangent; // resolve each contact for (j = 0; j < contactCount; j++) { var contact = contacts[j], contactVertex = contact.vertex, normalImpulse = contact.normalImpulse, tangentImpulse = contact.tangentImpulse; if (normalImpulse !== 0 || tangentImpulse !== 0) { // total impulse from contact var impulseX = normal.x * normalImpulse + tangent.x * tangentImpulse, impulseY = normal.y * normalImpulse + tangent.y * tangentImpulse; // apply impulse from contact if (!(bodyA.isStatic || bodyA.isSleeping)) { bodyA.positionPrev.x += impulseX * bodyA.inverseMass; bodyA.positionPrev.y += impulseY * bodyA.inverseMass; bodyA.anglePrev += bodyA.inverseInertia * ( (contactVertex.x - bodyA.position.x) * impulseY - (contactVertex.y - bodyA.position.y) * impulseX ); } if (!(bodyB.isStatic || bodyB.isSleeping)) { bodyB.positionPrev.x -= impulseX * bodyB.inverseMass; bodyB.positionPrev.y -= impulseY * bodyB.inverseMass; bodyB.anglePrev -= bodyB.inverseInertia * ( (contactVertex.x - bodyB.position.x) * impulseY - (contactVertex.y - bodyB.position.y) * impulseX ); } } } } }; /** * Find a solution for pair velocities. * @method solveVelocity * @param {pair[]} pairs * @param {number} delta */ Resolver.solveVelocity = function(pairs, delta) { var timeScale = delta / Common._baseDelta, timeScaleSquared = timeScale * timeScale, timeScaleCubed = timeScaleSquared * timeScale, restingThresh = -Resolver._restingThresh * timeScale, restingThreshTangent = Resolver._restingThreshTangent, frictionNormalMultiplier = Resolver._frictionNormalMultiplier * timeScale, frictionMaxStatic = Resolver._frictionMaxStatic, pairsLength = pairs.length, tangentImpulse, maxFriction, i, j; for (i = 0; i < pairsLength; i++) { var pair = pairs[i]; if (!pair.isActive || pair.isSensor) continue; var collision = pair.collision, bodyA = collision.parentA, bodyB = collision.parentB, normalX = collision.normal.x, normalY = collision.normal.y, tangentX = collision.tangent.x, tangentY = collision.tangent.y, inverseMassTotal = pair.inverseMass, friction = pair.friction * pair.frictionStatic * frictionNormalMultiplier, contacts = pair.contacts, contactCount = pair.contactCount, contactShare = 1 / contactCount; // get body velocities var bodyAVelocityX = bodyA.position.x - bodyA.positionPrev.x, bodyAVelocityY = bodyA.position.y - bodyA.positionPrev.y, bodyAAngularVelocity = bodyA.angle - bodyA.anglePrev, bodyBVelocityX = bodyB.position.x - bodyB.positionPrev.x, bodyBVelocityY = bodyB.position.y - bodyB.positionPrev.y, bodyBAngularVelocity = bodyB.angle - bodyB.anglePrev; // resolve each contact for (j = 0; j < contactCount; j++) { var contact = contacts[j], contactVertex = contact.vertex; var offsetAX = contactVertex.x - bodyA.position.x, offsetAY = contactVertex.y - bodyA.position.y, offsetBX = contactVertex.x - bodyB.position.x, offsetBY = contactVertex.y - bodyB.position.y; var velocityPointAX = bodyAVelocityX - offsetAY * bodyAAngularVelocity, velocityPointAY = bodyAVelocityY + offsetAX * bodyAAngularVelocity, velocityPointBX = bodyBVelocityX - offsetBY * bodyBAngularVelocity, velocityPointBY = bodyBVelocityY + offsetBX * bodyBAngularVelocity; var relativeVelocityX = velocityPointAX - velocityPointBX, relativeVelocityY = velocityPointAY - velocityPointBY; var normalVelocity = normalX * relativeVelocityX + normalY * relativeVelocityY, tangentVelocity = tangentX * relativeVelocityX + tangentY * relativeVelocityY; // coulomb friction var normalOverlap = pair.separation + normalVelocity; var normalForce = Math.min(normalOverlap, 1); normalForce = normalOverlap < 0 ? 0 : normalForce; var frictionLimit = normalForce * friction; if (tangentVelocity < -frictionLimit || tangentVelocity > frictionLimit) { maxFriction = (tangentVelocity > 0 ? tangentVelocity : -tangentVelocity); tangentImpulse = pair.friction * (tangentVelocity > 0 ? 1 : -1) * timeScaleCubed; if (tangentImpulse < -maxFriction) { tangentImpulse = -maxFriction; } else if (tangentImpulse > maxFriction) { tangentImpulse = maxFriction; } } else { tangentImpulse = tangentVelocity; maxFriction = frictionMaxStatic; } // account for mass, inertia and contact offset var oAcN = offsetAX * normalY - offsetAY * normalX, oBcN = offsetBX * normalY - offsetBY * normalX, share = contactShare / (inverseMassTotal + bodyA.inverseInertia * oAcN * oAcN + bodyB.inverseInertia * oBcN * oBcN); // raw impulses var normalImpulse = (1 + pair.restitution) * normalVelocity * share; tangentImpulse *= share; // handle high velocity and resting collisions separately if (normalVelocity < restingThresh) { // high normal velocity so clear cached contact normal impulse contact.normalImpulse = 0; } else { // solve resting collision constraints using Erin Catto's method (GDC08) // impulse constraint tends to 0 var contactNormalImpulse = contact.normalImpulse; contact.normalImpulse += normalImpulse; if (contact.normalImpulse > 0) contact.normalImpulse = 0; normalImpulse = contact.normalImpulse - contactNormalImpulse; } // handle high velocity and resting collisions separately if (tangentVelocity < -restingThreshTangent || tangentVelocity > restingThreshTangent) { // high tangent velocity so clear cached contact tangent impulse contact.tangentImpulse = 0; } else { // solve resting collision constraints using Erin Catto's method (GDC08) // tangent impulse tends to -tangentSpeed or +tangentSpeed var contactTangentImpulse = contact.tangentImpulse; contact.tangentImpulse += tangentImpulse; if (contact.tangentImpulse < -maxFriction) contact.tangentImpulse = -maxFriction; if (contact.tangentImpulse > maxFriction) contact.tangentImpulse = maxFriction; tangentImpulse = contact.tangentImpulse - contactTangentImpulse; } // total impulse from contact var impulseX = normalX * normalImpulse + tangentX * tangentImpulse, impulseY = normalY * normalImpulse + tangentY * tangentImpulse; // apply impulse from contact if (!(bodyA.isStatic || bodyA.isSleeping)) { bodyA.positionPrev.x += impulseX * bodyA.inverseMass; bodyA.positionPrev.y += impulseY * bodyA.inverseMass; bodyA.anglePrev += (offsetAX * impulseY - offsetAY * impulseX) * bodyA.inverseInertia; } if (!(bodyB.isStatic || bodyB.isSleeping)) { bodyB.positionPrev.x -= impulseX * bodyB.inverseMass; bodyB.positionPrev.y -= impulseY * bodyB.inverseMass; bodyB.anglePrev -= (offsetBX * impulseY - offsetBY * impulseX) * bodyB.inverseInertia; } } } }; })(); /***/ }), /* 19 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Pairs` module contains methods for creating and manipulating collision pair sets. * * @class Pairs */ var Pairs = {}; module.exports = Pairs; var Pair = __webpack_require__(9); var Common = __webpack_require__(0); (function() { /** * Creates a new pairs structure. * @method create * @param {object} options * @return {pairs} A new pairs structure */ Pairs.create = function(options) { return Common.extend({ table: {}, list: [], collisionStart: [], collisionActive: [], collisionEnd: [] }, options); }; /** * Updates pairs given a list of collisions. * @method update * @param {object} pairs * @param {collision[]} collisions * @param {number} timestamp */ Pairs.update = function(pairs, collisions, timestamp) { var pairUpdate = Pair.update, pairCreate = Pair.create, pairSetActive = Pair.setActive, pairsTable = pairs.table, pairsList = pairs.list, pairsListLength = pairsList.length, pairsListIndex = pairsListLength, collisionStart = pairs.collisionStart, collisionEnd = pairs.collisionEnd, collisionActive = pairs.collisionActive, collisionsLength = collisions.length, collisionStartIndex = 0, collisionEndIndex = 0, collisionActiveIndex = 0, collision, pair, i; for (i = 0; i < collisionsLength; i++) { collision = collisions[i]; pair = collision.pair; if (pair) { // pair already exists (but may or may not be active) if (pair.isActive) { // pair exists and is active collisionActive[collisionActiveIndex++] = pair; } // update the pair pairUpdate(pair, collision, timestamp); } else { // pair did not exist, create a new pair pair = pairCreate(collision, timestamp); pairsTable[pair.id] = pair; // add the new pair collisionStart[collisionStartIndex++] = pair; pairsList[pairsListIndex++] = pair; } } // find pairs that are no longer active pairsListIndex = 0; pairsListLength = pairsList.length; for (i = 0; i < pairsListLength; i++) { pair = pairsList[i]; // pair is active if updated this timestep if (pair.timeUpdated >= timestamp) { // keep active pairs pairsList[pairsListIndex++] = pair; } else { pairSetActive(pair, false, timestamp); // keep inactive pairs if both bodies may be sleeping if (pair.collision.bodyA.sleepCounter > 0 && pair.collision.bodyB.sleepCounter > 0) { pairsList[pairsListIndex++] = pair; } else { // remove inactive pairs if either body awake collisionEnd[collisionEndIndex++] = pair; delete pairsTable[pair.id]; } } } // update array lengths if changed if (pairsList.length !== pairsListIndex) { pairsList.length = pairsListIndex; } if (collisionStart.length !== collisionStartIndex) { collisionStart.length = collisionStartIndex; } if (collisionEnd.length !== collisionEndIndex) { collisionEnd.length = collisionEndIndex; } if (collisionActive.length !== collisionActiveIndex) { collisionActive.length = collisionActiveIndex; } }; /** * Clears the given pairs structure. * @method clear * @param {pairs} pairs * @return {pairs} pairs */ Pairs.clear = function(pairs) { pairs.table = {}; pairs.list.length = 0; pairs.collisionStart.length = 0; pairs.collisionActive.length = 0; pairs.collisionEnd.length = 0; return pairs; }; })(); /***/ }), /* 20 */ /***/ (function(module, exports, __webpack_require__) { var Matter = module.exports = __webpack_require__(21); Matter.Axes = __webpack_require__(11); Matter.Bodies = __webpack_require__(12); Matter.Body = __webpack_require__(4); Matter.Bounds = __webpack_require__(1); Matter.Collision = __webpack_require__(8); Matter.Common = __webpack_require__(0); Matter.Composite = __webpack_require__(6); Matter.Composites = __webpack_require__(22); Matter.Constraint = __webpack_require__(10); Matter.Contact = __webpack_require__(16); Matter.Detector = __webpack_require__(13); Matter.Engine = __webpack_require__(17); Matter.Events = __webpack_require__(5); Matter.Grid = __webpack_require__(23); Matter.Mouse = __webpack_require__(14); Matter.MouseConstraint = __webpack_require__(24); Matter.Pair = __webpack_require__(9); Matter.Pairs = __webpack_require__(19); Matter.Plugin = __webpack_require__(15); Matter.Query = __webpack_require__(25); Matter.Render = __webpack_require__(26); Matter.Resolver = __webpack_require__(18); Matter.Runner = __webpack_require__(27); Matter.SAT = __webpack_require__(28); Matter.Sleeping = __webpack_require__(7); Matter.Svg = __webpack_require__(29); Matter.Vector = __webpack_require__(2); Matter.Vertices = __webpack_require__(3); Matter.World = __webpack_require__(30); // temporary back compatibility Matter.Engine.run = Matter.Runner.run; Matter.Common.deprecated(Matter.Engine, 'run', 'Engine.run ➤ use Matter.Runner.run(engine) instead'); /***/ }), /* 21 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter` module is the top level namespace. It also includes a function for installing plugins on top of the library. * * @class Matter */ var Matter = {}; module.exports = Matter; var Plugin = __webpack_require__(15); var Common = __webpack_require__(0); (function() { /** * The library name. * @property name * @readOnly * @type {String} */ Matter.name = 'matter-js'; /** * The library version. * @property version * @readOnly * @type {String} */ Matter.version = true ? "0.20.0" : undefined; /** * A list of plugin dependencies to be installed. These are normally set and installed through `Matter.use`. * Alternatively you may set `Matter.uses` manually and install them by calling `Plugin.use(Matter)`. * @property uses * @type {Array} */ Matter.uses = []; /** * The plugins that have been installed through `Matter.Plugin.install`. Read only. * @property used * @readOnly * @type {Array} */ Matter.used = []; /** * Installs the given plugins on the `Matter` namespace. * This is a short-hand for `Plugin.use`, see it for more information. * Call this function once at the start of your code, with all of the plugins you wish to install as arguments. * Avoid calling this function multiple times unless you intend to manually control installation order. * @method use * @param ...plugin {Function} The plugin(s) to install on `base` (multi-argument). */ Matter.use = function() { Plugin.use(Matter, Array.prototype.slice.call(arguments)); }; /** * Chains a function to excute before the original function on the given `path` relative to `Matter`. * See also docs for `Common.chain`. * @method before * @param {string} path The path relative to `Matter` * @param {function} func The function to chain before the original * @return {function} The chained function that replaced the original */ Matter.before = function(path, func) { path = path.replace(/^Matter./, ''); return Common.chainPathBefore(Matter, path, func); }; /** * Chains a function to excute after the original function on the given `path` relative to `Matter`. * See also docs for `Common.chain`. * @method after * @param {string} path The path relative to `Matter` * @param {function} func The function to chain after the original * @return {function} The chained function that replaced the original */ Matter.after = function(path, func) { path = path.replace(/^Matter./, ''); return Common.chainPathAfter(Matter, path, func); }; })(); /***/ }), /* 22 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Composites` module contains factory methods for creating composite bodies * with commonly used configurations (such as stacks and chains). * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Composites */ var Composites = {}; module.exports = Composites; var Composite = __webpack_require__(6); var Constraint = __webpack_require__(10); var Common = __webpack_require__(0); var Body = __webpack_require__(4); var Bodies = __webpack_require__(12); var deprecated = Common.deprecated; (function() { /** * Create a new composite containing bodies created in the callback in a grid arrangement. * This function uses the body's bounds to prevent overlaps. * @method stack * @param {number} x Starting position in X. * @param {number} y Starting position in Y. * @param {number} columns * @param {number} rows * @param {number} columnGap * @param {number} rowGap * @param {function} callback * @return {composite} A new composite containing objects created in the callback */ Composites.stack = function(x, y, columns, rows, columnGap, rowGap, callback) { var stack = Composite.create({ label: 'Stack' }), currentX = x, currentY = y, lastBody, i = 0; for (var row = 0; row < rows; row++) { var maxHeight = 0; for (var column = 0; column < columns; column++) { var body = callback(currentX, currentY, column, row, lastBody, i); if (body) { var bodyHeight = body.bounds.max.y - body.bounds.min.y, bodyWidth = body.bounds.max.x - body.bounds.min.x; if (bodyHeight > maxHeight) maxHeight = bodyHeight; Body.translate(body, { x: bodyWidth * 0.5, y: bodyHeight * 0.5 }); currentX = body.bounds.max.x + columnGap; Composite.addBody(stack, body); lastBody = body; i += 1; } else { currentX += columnGap; } } currentY += maxHeight + rowGap; currentX = x; } return stack; }; /** * Chains all bodies in the given composite together using constraints. * @method chain * @param {composite} composite * @param {number} xOffsetA * @param {number} yOffsetA * @param {number} xOffsetB * @param {number} yOffsetB * @param {object} options * @return {composite} A new composite containing objects chained together with constraints */ Composites.chain = function(composite, xOffsetA, yOffsetA, xOffsetB, yOffsetB, options) { var bodies = composite.bodies; for (var i = 1; i < bodies.length; i++) { var bodyA = bodies[i - 1], bodyB = bodies[i], bodyAHeight = bodyA.bounds.max.y - bodyA.bounds.min.y, bodyAWidth = bodyA.bounds.max.x - bodyA.bounds.min.x, bodyBHeight = bodyB.bounds.max.y - bodyB.bounds.min.y, bodyBWidth = bodyB.bounds.max.x - bodyB.bounds.min.x; var defaults = { bodyA: bodyA, pointA: { x: bodyAWidth * xOffsetA, y: bodyAHeight * yOffsetA }, bodyB: bodyB, pointB: { x: bodyBWidth * xOffsetB, y: bodyBHeight * yOffsetB } }; var constraint = Common.extend(defaults, options); Composite.addConstraint(composite, Constraint.create(constraint)); } composite.label += ' Chain'; return composite; }; /** * Connects bodies in the composite with constraints in a grid pattern, with optional cross braces. * @method mesh * @param {composite} composite * @param {number} columns * @param {number} rows * @param {boolean} crossBrace * @param {object} options * @return {composite} The composite containing objects meshed together with constraints */ Composites.mesh = function(composite, columns, rows, crossBrace, options) { var bodies = composite.bodies, row, col, bodyA, bodyB, bodyC; for (row = 0; row < rows; row++) { for (col = 1; col < columns; col++) { bodyA = bodies[(col - 1) + (row * columns)]; bodyB = bodies[col + (row * columns)]; Composite.addConstraint(composite, Constraint.create(Common.extend({ bodyA: bodyA, bodyB: bodyB }, options))); } if (row > 0) { for (col = 0; col < columns; col++) { bodyA = bodies[col + ((row - 1) * columns)]; bodyB = bodies[col + (row * columns)]; Composite.addConstraint(composite, Constraint.create(Common.extend({ bodyA: bodyA, bodyB: bodyB }, options))); if (crossBrace && col > 0) { bodyC = bodies[(col - 1) + ((row - 1) * columns)]; Composite.addConstraint(composite, Constraint.create(Common.extend({ bodyA: bodyC, bodyB: bodyB }, options))); } if (crossBrace && col < columns - 1) { bodyC = bodies[(col + 1) + ((row - 1) * columns)]; Composite.addConstraint(composite, Constraint.create(Common.extend({ bodyA: bodyC, bodyB: bodyB }, options))); } } } } composite.label += ' Mesh'; return composite; }; /** * Create a new composite containing bodies created in the callback in a pyramid arrangement. * This function uses the body's bounds to prevent overlaps. * @method pyramid * @param {number} x Starting position in X. * @param {number} y Starting position in Y. * @param {number} columns * @param {number} rows * @param {number} columnGap * @param {number} rowGap * @param {function} callback * @return {composite} A new composite containing objects created in the callback */ Composites.pyramid = function(x, y, columns, rows, columnGap, rowGap, callback) { return Composites.stack(x, y, columns, rows, columnGap, rowGap, function(stackX, stackY, column, row, lastBody, i) { var actualRows = Math.min(rows, Math.ceil(columns / 2)), lastBodyWidth = lastBody ? lastBody.bounds.max.x - lastBody.bounds.min.x : 0; if (row > actualRows) return; // reverse row order row = actualRows - row; var start = row, end = columns - 1 - row; if (column < start || column > end) return; // retroactively fix the first body's position, since width was unknown if (i === 1) { Body.translate(lastBody, { x: (column + (columns % 2 === 1 ? 1 : -1)) * lastBodyWidth, y: 0 }); } var xOffset = lastBody ? column * lastBodyWidth : 0; return callback(x + xOffset + column * columnGap, stackY, column, row, lastBody, i); }); }; /** * This has now moved to the [newtonsCradle example](https://github.com/liabru/matter-js/blob/master/examples/newtonsCradle.js), follow that instead as this function is deprecated here. * @deprecated moved to newtonsCradle example * @method newtonsCradle * @param {number} x Starting position in X. * @param {number} y Starting position in Y. * @param {number} number * @param {number} size * @param {number} length * @return {composite} A new composite newtonsCradle body */ Composites.newtonsCradle = function(x, y, number, size, length) { var newtonsCradle = Composite.create({ label: 'Newtons Cradle' }); for (var i = 0; i < number; i++) { var separation = 1.9, circle = Bodies.circle(x + i * (size * separation), y + length, size, { inertia: Infinity, restitution: 1, friction: 0, frictionAir: 0.0001, slop: 1 }), constraint = Constraint.create({ pointA: { x: x + i * (size * separation), y: y }, bodyB: circle }); Composite.addBody(newtonsCradle, circle); Composite.addConstraint(newtonsCradle, constraint); } return newtonsCradle; }; deprecated(Composites, 'newtonsCradle', 'Composites.newtonsCradle ➤ moved to newtonsCradle example'); /** * This has now moved to the [car example](https://github.com/liabru/matter-js/blob/master/examples/car.js), follow that instead as this function is deprecated here. * @deprecated moved to car example * @method car * @param {number} x Starting position in X. * @param {number} y Starting position in Y. * @param {number} width * @param {number} height * @param {number} wheelSize * @return {composite} A new composite car body */ Composites.car = function(x, y, width, height, wheelSize) { var group = Body.nextGroup(true), wheelBase = 20, wheelAOffset = -width * 0.5 + wheelBase, wheelBOffset = width * 0.5 - wheelBase, wheelYOffset = 0; var car = Composite.create({ label: 'Car' }), body = Bodies.rectangle(x, y, width, height, { collisionFilter: { group: group }, chamfer: { radius: height * 0.5 }, density: 0.0002 }); var wheelA = Bodies.circle(x + wheelAOffset, y + wheelYOffset, wheelSize, { collisionFilter: { group: group }, friction: 0.8 }); var wheelB = Bodies.circle(x + wheelBOffset, y + wheelYOffset, wheelSize, { collisionFilter: { group: group }, friction: 0.8 }); var axelA = Constraint.create({ bodyB: body, pointB: { x: wheelAOffset, y: wheelYOffset }, bodyA: wheelA, stiffness: 1, length: 0 }); var axelB = Constraint.create({ bodyB: body, pointB: { x: wheelBOffset, y: wheelYOffset }, bodyA: wheelB, stiffness: 1, length: 0 }); Composite.addBody(car, body); Composite.addBody(car, wheelA); Composite.addBody(car, wheelB); Composite.addConstraint(car, axelA); Composite.addConstraint(car, axelB); return car; }; deprecated(Composites, 'car', 'Composites.car ➤ moved to car example'); /** * This has now moved to the [softBody example](https://github.com/liabru/matter-js/blob/master/examples/softBody.js) * and the [cloth example](https://github.com/liabru/matter-js/blob/master/examples/cloth.js), follow those instead as this function is deprecated here. * @deprecated moved to softBody and cloth examples * @method softBody * @param {number} x Starting position in X. * @param {number} y Starting position in Y. * @param {number} columns * @param {number} rows * @param {number} columnGap * @param {number} rowGap * @param {boolean} crossBrace * @param {number} particleRadius * @param {} particleOptions * @param {} constraintOptions * @return {composite} A new composite softBody */ Composites.softBody = function(x, y, columns, rows, columnGap, rowGap, crossBrace, particleRadius, particleOptions, constraintOptions) { particleOptions = Common.extend({ inertia: Infinity }, particleOptions); constraintOptions = Common.extend({ stiffness: 0.2, render: { type: 'line', anchors: false } }, constraintOptions); var softBody = Composites.stack(x, y, columns, rows, columnGap, rowGap, function(stackX, stackY) { return Bodies.circle(stackX, stackY, particleRadius, particleOptions); }); Composites.mesh(softBody, columns, rows, crossBrace, constraintOptions); softBody.label = 'Soft Body'; return softBody; }; deprecated(Composites, 'softBody', 'Composites.softBody ➤ moved to softBody and cloth examples'); })(); /***/ }), /* 23 */ /***/ (function(module, exports, __webpack_require__) { /** * This module has now been replaced by `Matter.Detector`. * * All usage should be migrated to `Matter.Detector` or another alternative. * For back-compatibility purposes this module will remain for a short term and then later removed in a future release. * * The `Matter.Grid` module contains methods for creating and manipulating collision broadphase grid structures. * * @class Grid * @deprecated */ var Grid = {}; module.exports = Grid; var Pair = __webpack_require__(9); var Common = __webpack_require__(0); var deprecated = Common.deprecated; (function() { /** * Creates a new grid. * @deprecated replaced by Matter.Detector * @method create * @param {} options * @return {grid} A new grid */ Grid.create = function(options) { var defaults = { buckets: {}, pairs: {}, pairsList: [], bucketWidth: 48, bucketHeight: 48 }; return Common.extend(defaults, options); }; /** * The width of a single grid bucket. * * @property bucketWidth * @type number * @default 48 */ /** * The height of a single grid bucket. * * @property bucketHeight * @type number * @default 48 */ /** * Updates the grid. * @deprecated replaced by Matter.Detector * @method update * @param {grid} grid * @param {body[]} bodies * @param {engine} engine * @param {boolean} forceUpdate */ Grid.update = function(grid, bodies, engine, forceUpdate) { var i, col, row, world = engine.world, buckets = grid.buckets, bucket, bucketId, gridChanged = false; for (i = 0; i < bodies.length; i++) { var body = bodies[i]; if (body.isSleeping && !forceUpdate) continue; // temporary back compatibility bounds check if (world.bounds && (body.bounds.max.x < world.bounds.min.x || body.bounds.min.x > world.bounds.max.x || body.bounds.max.y < world.bounds.min.y || body.bounds.min.y > world.bounds.max.y)) continue; var newRegion = Grid._getRegion(grid, body); // if the body has changed grid region if (!body.region || newRegion.id !== body.region.id || forceUpdate) { if (!body.region || forceUpdate) body.region = newRegion; var union = Grid._regionUnion(newRegion, body.region); // update grid buckets affected by region change // iterate over the union of both regions for (col = union.startCol; col <= union.endCol; col++) { for (row = union.startRow; row <= union.endRow; row++) { bucketId = Grid._getBucketId(col, row); bucket = buckets[bucketId]; var isInsideNewRegion = (col >= newRegion.startCol && col <= newRegion.endCol && row >= newRegion.startRow && row <= newRegion.endRow); var isInsideOldRegion = (col >= body.region.startCol && col <= body.region.endCol && row >= body.region.startRow && row <= body.region.endRow); // remove from old region buckets if (!isInsideNewRegion && isInsideOldRegion) { if (isInsideOldRegion) { if (bucket) Grid._bucketRemoveBody(grid, bucket, body); } } // add to new region buckets if (body.region === newRegion || (isInsideNewRegion && !isInsideOldRegion) || forceUpdate) { if (!bucket) bucket = Grid._createBucket(buckets, bucketId); Grid._bucketAddBody(grid, bucket, body); } } } // set the new region body.region = newRegion; // flag changes so we can update pairs gridChanged = true; } } // update pairs list only if pairs changed (i.e. a body changed region) if (gridChanged) grid.pairsList = Grid._createActivePairsList(grid); }; deprecated(Grid, 'update', 'Grid.update ➤ replaced by Matter.Detector'); /** * Clears the grid. * @deprecated replaced by Matter.Detector * @method clear * @param {grid} grid */ Grid.clear = function(grid) { grid.buckets = {}; grid.pairs = {}; grid.pairsList = []; }; deprecated(Grid, 'clear', 'Grid.clear ➤ replaced by Matter.Detector'); /** * Finds the union of two regions. * @method _regionUnion * @deprecated replaced by Matter.Detector * @private * @param {} regionA * @param {} regionB * @return {} region */ Grid._regionUnion = function(regionA, regionB) { var startCol = Math.min(regionA.startCol, regionB.startCol), endCol = Math.max(regionA.endCol, regionB.endCol), startRow = Math.min(regionA.startRow, regionB.startRow), endRow = Math.max(regionA.endRow, regionB.endRow); return Grid._createRegion(startCol, endCol, startRow, endRow); }; /** * Gets the region a given body falls in for a given grid. * @method _getRegion * @deprecated replaced by Matter.Detector * @private * @param {} grid * @param {} body * @return {} region */ Grid._getRegion = function(grid, body) { var bounds = body.bounds, startCol = Math.floor(bounds.min.x / grid.bucketWidth), endCol = Math.floor(bounds.max.x / grid.bucketWidth), startRow = Math.floor(bounds.min.y / grid.bucketHeight), endRow = Math.floor(bounds.max.y / grid.bucketHeight); return Grid._createRegion(startCol, endCol, startRow, endRow); }; /** * Creates a region. * @method _createRegion * @deprecated replaced by Matter.Detector * @private * @param {} startCol * @param {} endCol * @param {} startRow * @param {} endRow * @return {} region */ Grid._createRegion = function(startCol, endCol, startRow, endRow) { return { id: startCol + ',' + endCol + ',' + startRow + ',' + endRow, startCol: startCol, endCol: endCol, startRow: startRow, endRow: endRow }; }; /** * Gets the bucket id at the given position. * @method _getBucketId * @deprecated replaced by Matter.Detector * @private * @param {} column * @param {} row * @return {string} bucket id */ Grid._getBucketId = function(column, row) { return 'C' + column + 'R' + row; }; /** * Creates a bucket. * @method _createBucket * @deprecated replaced by Matter.Detector * @private * @param {} buckets * @param {} bucketId * @return {} bucket */ Grid._createBucket = function(buckets, bucketId) { var bucket = buckets[bucketId] = []; return bucket; }; /** * Adds a body to a bucket. * @method _bucketAddBody * @deprecated replaced by Matter.Detector * @private * @param {} grid * @param {} bucket * @param {} body */ Grid._bucketAddBody = function(grid, bucket, body) { var gridPairs = grid.pairs, pairId = Pair.id, bucketLength = bucket.length, i; // add new pairs for (i = 0; i < bucketLength; i++) { var bodyB = bucket[i]; if (body.id === bodyB.id || (body.isStatic && bodyB.isStatic)) continue; // keep track of the number of buckets the pair exists in // important for Grid.update to work var id = pairId(body, bodyB), pair = gridPairs[id]; if (pair) { pair[2] += 1; } else { gridPairs[id] = [body, bodyB, 1]; } } // add to bodies (after pairs, otherwise pairs with self) bucket.push(body); }; /** * Removes a body from a bucket. * @method _bucketRemoveBody * @deprecated replaced by Matter.Detector * @private * @param {} grid * @param {} bucket * @param {} body */ Grid._bucketRemoveBody = function(grid, bucket, body) { var gridPairs = grid.pairs, pairId = Pair.id, i; // remove from bucket bucket.splice(Common.indexOf(bucket, body), 1); var bucketLength = bucket.length; // update pair counts for (i = 0; i < bucketLength; i++) { // keep track of the number of buckets the pair exists in // important for _createActivePairsList to work var pair = gridPairs[pairId(body, bucket[i])]; if (pair) pair[2] -= 1; } }; /** * Generates a list of the active pairs in the grid. * @method _createActivePairsList * @deprecated replaced by Matter.Detector * @private * @param {} grid * @return [] pairs */ Grid._createActivePairsList = function(grid) { var pair, gridPairs = grid.pairs, pairKeys = Common.keys(gridPairs), pairKeysLength = pairKeys.length, pairs = [], k; // iterate over grid.pairs for (k = 0; k < pairKeysLength; k++) { pair = gridPairs[pairKeys[k]]; // if pair exists in at least one bucket // it is a pair that needs further collision testing so push it if (pair[2] > 0) { pairs.push(pair); } else { delete gridPairs[pairKeys[k]]; } } return pairs; }; })(); /***/ }), /* 24 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.MouseConstraint` module contains methods for creating mouse constraints. * Mouse constraints are used for allowing user interaction, providing the ability to move bodies via the mouse or touch. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class MouseConstraint */ var MouseConstraint = {}; module.exports = MouseConstraint; var Vertices = __webpack_require__(3); var Sleeping = __webpack_require__(7); var Mouse = __webpack_require__(14); var Events = __webpack_require__(5); var Detector = __webpack_require__(13); var Constraint = __webpack_require__(10); var Composite = __webpack_require__(6); var Common = __webpack_require__(0); var Bounds = __webpack_require__(1); (function() { /** * Creates a new mouse constraint. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {engine} engine * @param {} options * @return {MouseConstraint} A new MouseConstraint */ MouseConstraint.create = function(engine, options) { var mouse = (engine ? engine.mouse : null) || (options ? options.mouse : null); if (!mouse) { if (engine && engine.render && engine.render.canvas) { mouse = Mouse.create(engine.render.canvas); } else if (options && options.element) { mouse = Mouse.create(options.element); } else { mouse = Mouse.create(); Common.warn('MouseConstraint.create: options.mouse was undefined, options.element was undefined, may not function as expected'); } } var constraint = Constraint.create({ label: 'Mouse Constraint', pointA: mouse.position, pointB: { x: 0, y: 0 }, length: 0.01, stiffness: 0.1, angularStiffness: 1, render: { strokeStyle: '#90EE90', lineWidth: 3 } }); var defaults = { type: 'mouseConstraint', mouse: mouse, element: null, body: null, constraint: constraint, collisionFilter: { category: 0x0001, mask: 0xFFFFFFFF, group: 0 } }; var mouseConstraint = Common.extend(defaults, options); Events.on(engine, 'beforeUpdate', function() { var allBodies = Composite.allBodies(engine.world); MouseConstraint.update(mouseConstraint, allBodies); MouseConstraint._triggerEvents(mouseConstraint); }); return mouseConstraint; }; /** * Updates the given mouse constraint. * @private * @method update * @param {MouseConstraint} mouseConstraint * @param {body[]} bodies */ MouseConstraint.update = function(mouseConstraint, bodies) { var mouse = mouseConstraint.mouse, constraint = mouseConstraint.constraint, body = mouseConstraint.body; if (mouse.button === 0) { if (!constraint.bodyB) { for (var i = 0; i < bodies.length; i++) { body = bodies[i]; if (Bounds.contains(body.bounds, mouse.position) && Detector.canCollide(body.collisionFilter, mouseConstraint.collisionFilter)) { for (var j = body.parts.length > 1 ? 1 : 0; j < body.parts.length; j++) { var part = body.parts[j]; if (Vertices.contains(part.vertices, mouse.position)) { constraint.pointA = mouse.position; constraint.bodyB = mouseConstraint.body = body; constraint.pointB = { x: mouse.position.x - body.position.x, y: mouse.position.y - body.position.y }; constraint.angleB = body.angle; Sleeping.set(body, false); Events.trigger(mouseConstraint, 'startdrag', { mouse: mouse, body: body }); break; } } } } } else { Sleeping.set(constraint.bodyB, false); constraint.pointA = mouse.position; } } else { constraint.bodyB = mouseConstraint.body = null; constraint.pointB = null; if (body) Events.trigger(mouseConstraint, 'enddrag', { mouse: mouse, body: body }); } }; /** * Triggers mouse constraint events. * @method _triggerEvents * @private * @param {mouse} mouseConstraint */ MouseConstraint._triggerEvents = function(mouseConstraint) { var mouse = mouseConstraint.mouse, mouseEvents = mouse.sourceEvents; if (mouseEvents.mousemove) Events.trigger(mouseConstraint, 'mousemove', { mouse: mouse }); if (mouseEvents.mousedown) Events.trigger(mouseConstraint, 'mousedown', { mouse: mouse }); if (mouseEvents.mouseup) Events.trigger(mouseConstraint, 'mouseup', { mouse: mouse }); // reset the mouse state ready for the next step Mouse.clearSourceEvents(mouse); }; /* * * Events Documentation * */ /** * Fired when the mouse has moved (or a touch moves) during the last step * * @event mousemove * @param {} event An event object * @param {mouse} event.mouse The engine's mouse instance * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when the mouse is down (or a touch has started) during the last step * * @event mousedown * @param {} event An event object * @param {mouse} event.mouse The engine's mouse instance * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when the mouse is up (or a touch has ended) during the last step * * @event mouseup * @param {} event An event object * @param {mouse} event.mouse The engine's mouse instance * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when the user starts dragging a body * * @event startdrag * @param {} event An event object * @param {mouse} event.mouse The engine's mouse instance * @param {body} event.body The body being dragged * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired when the user ends dragging a body * * @event enddrag * @param {} event An event object * @param {mouse} event.mouse The engine's mouse instance * @param {body} event.body The body that has stopped being dragged * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /* * * Properties Documentation * */ /** * A `String` denoting the type of object. * * @property type * @type string * @default "constraint" * @readOnly */ /** * The `Mouse` instance in use. If not supplied in `MouseConstraint.create`, one will be created. * * @property mouse * @type mouse * @default mouse */ /** * The `Body` that is currently being moved by the user, or `null` if no body. * * @property body * @type body * @default null */ /** * The `Constraint` object that is used to move the body during interaction. * * @property constraint * @type constraint */ /** * An `Object` that specifies the collision filter properties. * The collision filter allows the user to define which types of body this mouse constraint can interact with. * See `body.collisionFilter` for more information. * * @property collisionFilter * @type object */ })(); /***/ }), /* 25 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Query` module contains methods for performing collision queries. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Query */ var Query = {}; module.exports = Query; var Vector = __webpack_require__(2); var Collision = __webpack_require__(8); var Bounds = __webpack_require__(1); var Bodies = __webpack_require__(12); var Vertices = __webpack_require__(3); (function() { /** * Returns a list of collisions between `body` and `bodies`. * @method collides * @param {body} body * @param {body[]} bodies * @return {collision[]} Collisions */ Query.collides = function(body, bodies) { var collisions = [], bodiesLength = bodies.length, bounds = body.bounds, collides = Collision.collides, overlaps = Bounds.overlaps; for (var i = 0; i < bodiesLength; i++) { var bodyA = bodies[i], partsALength = bodyA.parts.length, partsAStart = partsALength === 1 ? 0 : 1; if (overlaps(bodyA.bounds, bounds)) { for (var j = partsAStart; j < partsALength; j++) { var part = bodyA.parts[j]; if (overlaps(part.bounds, bounds)) { var collision = collides(part, body); if (collision) { collisions.push(collision); break; } } } } } return collisions; }; /** * Casts a ray segment against a set of bodies and returns all collisions, ray width is optional. Intersection points are not provided. * @method ray * @param {body[]} bodies * @param {vector} startPoint * @param {vector} endPoint * @param {number} [rayWidth] * @return {collision[]} Collisions */ Query.ray = function(bodies, startPoint, endPoint, rayWidth) { rayWidth = rayWidth || 1e-100; var rayAngle = Vector.angle(startPoint, endPoint), rayLength = Vector.magnitude(Vector.sub(startPoint, endPoint)), rayX = (endPoint.x + startPoint.x) * 0.5, rayY = (endPoint.y + startPoint.y) * 0.5, ray = Bodies.rectangle(rayX, rayY, rayLength, rayWidth, { angle: rayAngle }), collisions = Query.collides(ray, bodies); for (var i = 0; i < collisions.length; i += 1) { var collision = collisions[i]; collision.body = collision.bodyB = collision.bodyA; } return collisions; }; /** * Returns all bodies whose bounds are inside (or outside if set) the given set of bounds, from the given set of bodies. * @method region * @param {body[]} bodies * @param {bounds} bounds * @param {bool} [outside=false] * @return {body[]} The bodies matching the query */ Query.region = function(bodies, bounds, outside) { var result = []; for (var i = 0; i < bodies.length; i++) { var body = bodies[i], overlaps = Bounds.overlaps(body.bounds, bounds); if ((overlaps && !outside) || (!overlaps && outside)) result.push(body); } return result; }; /** * Returns all bodies whose vertices contain the given point, from the given set of bodies. * @method point * @param {body[]} bodies * @param {vector} point * @return {body[]} The bodies matching the query */ Query.point = function(bodies, point) { var result = []; for (var i = 0; i < bodies.length; i++) { var body = bodies[i]; if (Bounds.contains(body.bounds, point)) { for (var j = body.parts.length === 1 ? 0 : 1; j < body.parts.length; j++) { var part = body.parts[j]; if (Bounds.contains(part.bounds, point) && Vertices.contains(part.vertices, point)) { result.push(body); break; } } } } return result; }; })(); /***/ }), /* 26 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Render` module is a lightweight, optional utility which provides a simple canvas based renderer for visualising instances of `Matter.Engine`. * It is intended for development and debugging purposes, but may also be suitable for simple games. * It includes a number of drawing options including wireframe, vector with support for sprites and viewports. * * @class Render */ var Render = {}; module.exports = Render; var Body = __webpack_require__(4); var Common = __webpack_require__(0); var Composite = __webpack_require__(6); var Bounds = __webpack_require__(1); var Events = __webpack_require__(5); var Vector = __webpack_require__(2); var Mouse = __webpack_require__(14); (function() { var _requestAnimationFrame, _cancelAnimationFrame; if (typeof window !== 'undefined') { _requestAnimationFrame = window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame || window.msRequestAnimationFrame || function(callback){ window.setTimeout(function() { callback(Common.now()); }, 1000 / 60); }; _cancelAnimationFrame = window.cancelAnimationFrame || window.mozCancelAnimationFrame || window.webkitCancelAnimationFrame || window.msCancelAnimationFrame; } Render._goodFps = 30; Render._goodDelta = 1000 / 60; /** * Creates a new renderer. The options parameter is an object that specifies any properties you wish to override the defaults. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {object} [options] * @return {render} A new renderer */ Render.create = function(options) { var defaults = { engine: null, element: null, canvas: null, mouse: null, frameRequestId: null, timing: { historySize: 60, delta: 0, deltaHistory: [], lastTime: 0, lastTimestamp: 0, lastElapsed: 0, timestampElapsed: 0, timestampElapsedHistory: [], engineDeltaHistory: [], engineElapsedHistory: [], engineUpdatesHistory: [], elapsedHistory: [] }, options: { width: 800, height: 600, pixelRatio: 1, background: '#14151f', wireframeBackground: '#14151f', wireframeStrokeStyle: '#bbb', hasBounds: !!options.bounds, enabled: true, wireframes: true, showSleeping: true, showDebug: false, showStats: false, showPerformance: false, showBounds: false, showVelocity: false, showCollisions: false, showSeparations: false, showAxes: false, showPositions: false, showAngleIndicator: false, showIds: false, showVertexNumbers: false, showConvexHulls: false, showInternalEdges: false, showMousePosition: false } }; var render = Common.extend(defaults, options); if (render.canvas) { render.canvas.width = render.options.width || render.canvas.width; render.canvas.height = render.options.height || render.canvas.height; } render.mouse = options.mouse; render.engine = options.engine; render.canvas = render.canvas || _createCanvas(render.options.width, render.options.height); render.context = render.canvas.getContext('2d'); render.textures = {}; render.bounds = render.bounds || { min: { x: 0, y: 0 }, max: { x: render.canvas.width, y: render.canvas.height } }; // for temporary back compatibility only render.controller = Render; render.options.showBroadphase = false; if (render.options.pixelRatio !== 1) { Render.setPixelRatio(render, render.options.pixelRatio); } if (Common.isElement(render.element)) { render.element.appendChild(render.canvas); } return render; }; /** * Continuously updates the render canvas on the `requestAnimationFrame` event. * @method run * @param {render} render */ Render.run = function(render) { (function loop(time){ render.frameRequestId = _requestAnimationFrame(loop); _updateTiming(render, time); Render.world(render, time); render.context.setTransform(render.options.pixelRatio, 0, 0, render.options.pixelRatio, 0, 0); if (render.options.showStats || render.options.showDebug) { Render.stats(render, render.context, time); } if (render.options.showPerformance || render.options.showDebug) { Render.performance(render, render.context, time); } render.context.setTransform(1, 0, 0, 1, 0, 0); })(); }; /** * Ends execution of `Render.run` on the given `render`, by canceling the animation frame request event loop. * @method stop * @param {render} render */ Render.stop = function(render) { _cancelAnimationFrame(render.frameRequestId); }; /** * Sets the pixel ratio of the renderer and updates the canvas. * To automatically detect the correct ratio, pass the string `'auto'` for `pixelRatio`. * @method setPixelRatio * @param {render} render * @param {number} pixelRatio */ Render.setPixelRatio = function(render, pixelRatio) { var options = render.options, canvas = render.canvas; if (pixelRatio === 'auto') { pixelRatio = _getPixelRatio(canvas); } options.pixelRatio = pixelRatio; canvas.setAttribute('data-pixel-ratio', pixelRatio); canvas.width = options.width * pixelRatio; canvas.height = options.height * pixelRatio; canvas.style.width = options.width + 'px'; canvas.style.height = options.height + 'px'; }; /** * Sets the render `width` and `height`. * * Updates the canvas accounting for `render.options.pixelRatio`. * * Updates the bottom right render bound `render.bounds.max` relative to the provided `width` and `height`. * The top left render bound `render.bounds.min` isn't changed. * * Follow this call with `Render.lookAt` if you need to change the render bounds. * * See also `Render.setPixelRatio`. * @method setSize * @param {render} render * @param {number} width The width (in CSS pixels) * @param {number} height The height (in CSS pixels) */ Render.setSize = function(render, width, height) { render.options.width = width; render.options.height = height; render.bounds.max.x = render.bounds.min.x + width; render.bounds.max.y = render.bounds.min.y + height; if (render.options.pixelRatio !== 1) { Render.setPixelRatio(render, render.options.pixelRatio); } else { render.canvas.width = width; render.canvas.height = height; } }; /** * Positions and sizes the viewport around the given object bounds. * Objects must have at least one of the following properties: * - `object.bounds` * - `object.position` * - `object.min` and `object.max` * - `object.x` and `object.y` * @method lookAt * @param {render} render * @param {object[]} objects * @param {vector} [padding] * @param {bool} [center=true] */ Render.lookAt = function(render, objects, padding, center) { center = typeof center !== 'undefined' ? center : true; objects = Common.isArray(objects) ? objects : [objects]; padding = padding || { x: 0, y: 0 }; // find bounds of all objects var bounds = { min: { x: Infinity, y: Infinity }, max: { x: -Infinity, y: -Infinity } }; for (var i = 0; i < objects.length; i += 1) { var object = objects[i], min = object.bounds ? object.bounds.min : (object.min || object.position || object), max = object.bounds ? object.bounds.max : (object.max || object.position || object); if (min && max) { if (min.x < bounds.min.x) bounds.min.x = min.x; if (max.x > bounds.max.x) bounds.max.x = max.x; if (min.y < bounds.min.y) bounds.min.y = min.y; if (max.y > bounds.max.y) bounds.max.y = max.y; } } // find ratios var width = (bounds.max.x - bounds.min.x) + 2 * padding.x, height = (bounds.max.y - bounds.min.y) + 2 * padding.y, viewHeight = render.canvas.height, viewWidth = render.canvas.width, outerRatio = viewWidth / viewHeight, innerRatio = width / height, scaleX = 1, scaleY = 1; // find scale factor if (innerRatio > outerRatio) { scaleY = innerRatio / outerRatio; } else { scaleX = outerRatio / innerRatio; } // enable bounds render.options.hasBounds = true; // position and size render.bounds.min.x = bounds.min.x; render.bounds.max.x = bounds.min.x + width * scaleX; render.bounds.min.y = bounds.min.y; render.bounds.max.y = bounds.min.y + height * scaleY; // center if (center) { render.bounds.min.x += width * 0.5 - (width * scaleX) * 0.5; render.bounds.max.x += width * 0.5 - (width * scaleX) * 0.5; render.bounds.min.y += height * 0.5 - (height * scaleY) * 0.5; render.bounds.max.y += height * 0.5 - (height * scaleY) * 0.5; } // padding render.bounds.min.x -= padding.x; render.bounds.max.x -= padding.x; render.bounds.min.y -= padding.y; render.bounds.max.y -= padding.y; // update mouse if (render.mouse) { Mouse.setScale(render.mouse, { x: (render.bounds.max.x - render.bounds.min.x) / render.canvas.width, y: (render.bounds.max.y - render.bounds.min.y) / render.canvas.height }); Mouse.setOffset(render.mouse, render.bounds.min); } }; /** * Applies viewport transforms based on `render.bounds` to a render context. * @method startViewTransform * @param {render} render */ Render.startViewTransform = function(render) { var boundsWidth = render.bounds.max.x - render.bounds.min.x, boundsHeight = render.bounds.max.y - render.bounds.min.y, boundsScaleX = boundsWidth / render.options.width, boundsScaleY = boundsHeight / render.options.height; render.context.setTransform( render.options.pixelRatio / boundsScaleX, 0, 0, render.options.pixelRatio / boundsScaleY, 0, 0 ); render.context.translate(-render.bounds.min.x, -render.bounds.min.y); }; /** * Resets all transforms on the render context. * @method endViewTransform * @param {render} render */ Render.endViewTransform = function(render) { render.context.setTransform(render.options.pixelRatio, 0, 0, render.options.pixelRatio, 0, 0); }; /** * Renders the given `engine`'s `Matter.World` object. * This is the entry point for all rendering and should be called every time the scene changes. * @method world * @param {render} render */ Render.world = function(render, time) { var startTime = Common.now(), engine = render.engine, world = engine.world, canvas = render.canvas, context = render.context, options = render.options, timing = render.timing; var allBodies = Composite.allBodies(world), allConstraints = Composite.allConstraints(world), background = options.wireframes ? options.wireframeBackground : options.background, bodies = [], constraints = [], i; var event = { timestamp: engine.timing.timestamp }; Events.trigger(render, 'beforeRender', event); // apply background if it has changed if (render.currentBackground !== background) _applyBackground(render, background); // clear the canvas with a transparent fill, to allow the canvas background to show context.globalCompositeOperation = 'source-in'; context.fillStyle = "transparent"; context.fillRect(0, 0, canvas.width, canvas.height); context.globalCompositeOperation = 'source-over'; // handle bounds if (options.hasBounds) { // filter out bodies that are not in view for (i = 0; i < allBodies.length; i++) { var body = allBodies[i]; if (Bounds.overlaps(body.bounds, render.bounds)) bodies.push(body); } // filter out constraints that are not in view for (i = 0; i < allConstraints.length; i++) { var constraint = allConstraints[i], bodyA = constraint.bodyA, bodyB = constraint.bodyB, pointAWorld = constraint.pointA, pointBWorld = constraint.pointB; if (bodyA) pointAWorld = Vector.add(bodyA.position, constraint.pointA); if (bodyB) pointBWorld = Vector.add(bodyB.position, constraint.pointB); if (!pointAWorld || !pointBWorld) continue; if (Bounds.contains(render.bounds, pointAWorld) || Bounds.contains(render.bounds, pointBWorld)) constraints.push(constraint); } // transform the view Render.startViewTransform(render); // update mouse if (render.mouse) { Mouse.setScale(render.mouse, { x: (render.bounds.max.x - render.bounds.min.x) / render.options.width, y: (render.bounds.max.y - render.bounds.min.y) / render.options.height }); Mouse.setOffset(render.mouse, render.bounds.min); } } else { constraints = allConstraints; bodies = allBodies; if (render.options.pixelRatio !== 1) { render.context.setTransform(render.options.pixelRatio, 0, 0, render.options.pixelRatio, 0, 0); } } if (!options.wireframes || (engine.enableSleeping && options.showSleeping)) { // fully featured rendering of bodies Render.bodies(render, bodies, context); } else { if (options.showConvexHulls) Render.bodyConvexHulls(render, bodies, context); // optimised method for wireframes only Render.bodyWireframes(render, bodies, context); } if (options.showBounds) Render.bodyBounds(render, bodies, context); if (options.showAxes || options.showAngleIndicator) Render.bodyAxes(render, bodies, context); if (options.showPositions) Render.bodyPositions(render, bodies, context); if (options.showVelocity) Render.bodyVelocity(render, bodies, context); if (options.showIds) Render.bodyIds(render, bodies, context); if (options.showSeparations) Render.separations(render, engine.pairs.list, context); if (options.showCollisions) Render.collisions(render, engine.pairs.list, context); if (options.showVertexNumbers) Render.vertexNumbers(render, bodies, context); if (options.showMousePosition) Render.mousePosition(render, render.mouse, context); Render.constraints(constraints, context); if (options.hasBounds) { // revert view transforms Render.endViewTransform(render); } Events.trigger(render, 'afterRender', event); // log the time elapsed computing this update timing.lastElapsed = Common.now() - startTime; }; /** * Renders statistics about the engine and world useful for debugging. * @private * @method stats * @param {render} render * @param {RenderingContext} context * @param {Number} time */ Render.stats = function(render, context, time) { var engine = render.engine, world = engine.world, bodies = Composite.allBodies(world), parts = 0, width = 55, height = 44, x = 0, y = 0; // count parts for (var i = 0; i < bodies.length; i += 1) { parts += bodies[i].parts.length; } // sections var sections = { 'Part': parts, 'Body': bodies.length, 'Cons': Composite.allConstraints(world).length, 'Comp': Composite.allComposites(world).length, 'Pair': engine.pairs.list.length }; // background context.fillStyle = '#0e0f19'; context.fillRect(x, y, width * 5.5, height); context.font = '12px Arial'; context.textBaseline = 'top'; context.textAlign = 'right'; // sections for (var key in sections) { var section = sections[key]; // label context.fillStyle = '#aaa'; context.fillText(key, x + width, y + 8); // value context.fillStyle = '#eee'; context.fillText(section, x + width, y + 26); x += width; } }; /** * Renders engine and render performance information. * @private * @method performance * @param {render} render * @param {RenderingContext} context */ Render.performance = function(render, context) { var engine = render.engine, timing = render.timing, deltaHistory = timing.deltaHistory, elapsedHistory = timing.elapsedHistory, timestampElapsedHistory = timing.timestampElapsedHistory, engineDeltaHistory = timing.engineDeltaHistory, engineUpdatesHistory = timing.engineUpdatesHistory, engineElapsedHistory = timing.engineElapsedHistory, lastEngineUpdatesPerFrame = engine.timing.lastUpdatesPerFrame, lastEngineDelta = engine.timing.lastDelta; var deltaMean = _mean(deltaHistory), elapsedMean = _mean(elapsedHistory), engineDeltaMean = _mean(engineDeltaHistory), engineUpdatesMean = _mean(engineUpdatesHistory), engineElapsedMean = _mean(engineElapsedHistory), timestampElapsedMean = _mean(timestampElapsedHistory), rateMean = (timestampElapsedMean / deltaMean) || 0, neededUpdatesPerFrame = Math.round(deltaMean / lastEngineDelta), fps = (1000 / deltaMean) || 0; var graphHeight = 4, gap = 12, width = 60, height = 34, x = 10, y = 69; // background context.fillStyle = '#0e0f19'; context.fillRect(0, 50, gap * 5 + width * 6 + 22, height); // show FPS Render.status( context, x, y, width, graphHeight, deltaHistory.length, Math.round(fps) + ' fps', fps / Render._goodFps, function(i) { return (deltaHistory[i] / deltaMean) - 1; } ); // show engine delta Render.status( context, x + gap + width, y, width, graphHeight, engineDeltaHistory.length, lastEngineDelta.toFixed(2) + ' dt', Render._goodDelta / lastEngineDelta, function(i) { return (engineDeltaHistory[i] / engineDeltaMean) - 1; } ); // show engine updates per frame Render.status( context, x + (gap + width) * 2, y, width, graphHeight, engineUpdatesHistory.length, lastEngineUpdatesPerFrame + ' upf', Math.pow(Common.clamp((engineUpdatesMean / neededUpdatesPerFrame) || 1, 0, 1), 4), function(i) { return (engineUpdatesHistory[i] / engineUpdatesMean) - 1; } ); // show engine update time Render.status( context, x + (gap + width) * 3, y, width, graphHeight, engineElapsedHistory.length, engineElapsedMean.toFixed(2) + ' ut', 1 - (lastEngineUpdatesPerFrame * engineElapsedMean / Render._goodFps), function(i) { return (engineElapsedHistory[i] / engineElapsedMean) - 1; } ); // show render time Render.status( context, x + (gap + width) * 4, y, width, graphHeight, elapsedHistory.length, elapsedMean.toFixed(2) + ' rt', 1 - (elapsedMean / Render._goodFps), function(i) { return (elapsedHistory[i] / elapsedMean) - 1; } ); // show effective speed Render.status( context, x + (gap + width) * 5, y, width, graphHeight, timestampElapsedHistory.length, rateMean.toFixed(2) + ' x', rateMean * rateMean * rateMean, function(i) { return (((timestampElapsedHistory[i] / deltaHistory[i]) / rateMean) || 0) - 1; } ); }; /** * Renders a label, indicator and a chart. * @private * @method status * @param {RenderingContext} context * @param {number} x * @param {number} y * @param {number} width * @param {number} height * @param {number} count * @param {string} label * @param {string} indicator * @param {function} plotY */ Render.status = function(context, x, y, width, height, count, label, indicator, plotY) { // background context.strokeStyle = '#888'; context.fillStyle = '#444'; context.lineWidth = 1; context.fillRect(x, y + 7, width, 1); // chart context.beginPath(); context.moveTo(x, y + 7 - height * Common.clamp(0.4 * plotY(0), -2, 2)); for (var i = 0; i < width; i += 1) { context.lineTo(x + i, y + 7 - (i < count ? height * Common.clamp(0.4 * plotY(i), -2, 2) : 0)); } context.stroke(); // indicator context.fillStyle = 'hsl(' + Common.clamp(25 + 95 * indicator, 0, 120) + ',100%,60%)'; context.fillRect(x, y - 7, 4, 4); // label context.font = '12px Arial'; context.textBaseline = 'middle'; context.textAlign = 'right'; context.fillStyle = '#eee'; context.fillText(label, x + width, y - 5); }; /** * Description * @private * @method constraints * @param {constraint[]} constraints * @param {RenderingContext} context */ Render.constraints = function(constraints, context) { var c = context; for (var i = 0; i < constraints.length; i++) { var constraint = constraints[i]; if (!constraint.render.visible || !constraint.pointA || !constraint.pointB) continue; var bodyA = constraint.bodyA, bodyB = constraint.bodyB, start, end; if (bodyA) { start = Vector.add(bodyA.position, constraint.pointA); } else { start = constraint.pointA; } if (constraint.render.type === 'pin') { c.beginPath(); c.arc(start.x, start.y, 3, 0, 2 * Math.PI); c.closePath(); } else { if (bodyB) { end = Vector.add(bodyB.position, constraint.pointB); } else { end = constraint.pointB; } c.beginPath(); c.moveTo(start.x, start.y); if (constraint.render.type === 'spring') { var delta = Vector.sub(end, start), normal = Vector.perp(Vector.normalise(delta)), coils = Math.ceil(Common.clamp(constraint.length / 5, 12, 20)), offset; for (var j = 1; j < coils; j += 1) { offset = j % 2 === 0 ? 1 : -1; c.lineTo( start.x + delta.x * (j / coils) + normal.x * offset * 4, start.y + delta.y * (j / coils) + normal.y * offset * 4 ); } } c.lineTo(end.x, end.y); } if (constraint.render.lineWidth) { c.lineWidth = constraint.render.lineWidth; c.strokeStyle = constraint.render.strokeStyle; c.stroke(); } if (constraint.render.anchors) { c.fillStyle = constraint.render.strokeStyle; c.beginPath(); c.arc(start.x, start.y, 3, 0, 2 * Math.PI); c.arc(end.x, end.y, 3, 0, 2 * Math.PI); c.closePath(); c.fill(); } } }; /** * Description * @private * @method bodies * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodies = function(render, bodies, context) { var c = context, engine = render.engine, options = render.options, showInternalEdges = options.showInternalEdges || !options.wireframes, body, part, i, k; for (i = 0; i < bodies.length; i++) { body = bodies[i]; if (!body.render.visible) continue; // handle compound parts for (k = body.parts.length > 1 ? 1 : 0; k < body.parts.length; k++) { part = body.parts[k]; if (!part.render.visible) continue; if (options.showSleeping && body.isSleeping) { c.globalAlpha = 0.5 * part.render.opacity; } else if (part.render.opacity !== 1) { c.globalAlpha = part.render.opacity; } if (part.render.sprite && part.render.sprite.texture && !options.wireframes) { // part sprite var sprite = part.render.sprite, texture = _getTexture(render, sprite.texture); c.translate(part.position.x, part.position.y); c.rotate(part.angle); c.drawImage( texture, texture.width * -sprite.xOffset * sprite.xScale, texture.height * -sprite.yOffset * sprite.yScale, texture.width * sprite.xScale, texture.height * sprite.yScale ); // revert translation, hopefully faster than save / restore c.rotate(-part.angle); c.translate(-part.position.x, -part.position.y); } else { // part polygon if (part.circleRadius) { c.beginPath(); c.arc(part.position.x, part.position.y, part.circleRadius, 0, 2 * Math.PI); } else { c.beginPath(); c.moveTo(part.vertices[0].x, part.vertices[0].y); for (var j = 1; j < part.vertices.length; j++) { if (!part.vertices[j - 1].isInternal || showInternalEdges) { c.lineTo(part.vertices[j].x, part.vertices[j].y); } else { c.moveTo(part.vertices[j].x, part.vertices[j].y); } if (part.vertices[j].isInternal && !showInternalEdges) { c.moveTo(part.vertices[(j + 1) % part.vertices.length].x, part.vertices[(j + 1) % part.vertices.length].y); } } c.lineTo(part.vertices[0].x, part.vertices[0].y); c.closePath(); } if (!options.wireframes) { c.fillStyle = part.render.fillStyle; if (part.render.lineWidth) { c.lineWidth = part.render.lineWidth; c.strokeStyle = part.render.strokeStyle; c.stroke(); } c.fill(); } else { c.lineWidth = 1; c.strokeStyle = render.options.wireframeStrokeStyle; c.stroke(); } } c.globalAlpha = 1; } } }; /** * Optimised method for drawing body wireframes in one pass * @private * @method bodyWireframes * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodyWireframes = function(render, bodies, context) { var c = context, showInternalEdges = render.options.showInternalEdges, body, part, i, j, k; c.beginPath(); // render all bodies for (i = 0; i < bodies.length; i++) { body = bodies[i]; if (!body.render.visible) continue; // handle compound parts for (k = body.parts.length > 1 ? 1 : 0; k < body.parts.length; k++) { part = body.parts[k]; c.moveTo(part.vertices[0].x, part.vertices[0].y); for (j = 1; j < part.vertices.length; j++) { if (!part.vertices[j - 1].isInternal || showInternalEdges) { c.lineTo(part.vertices[j].x, part.vertices[j].y); } else { c.moveTo(part.vertices[j].x, part.vertices[j].y); } if (part.vertices[j].isInternal && !showInternalEdges) { c.moveTo(part.vertices[(j + 1) % part.vertices.length].x, part.vertices[(j + 1) % part.vertices.length].y); } } c.lineTo(part.vertices[0].x, part.vertices[0].y); } } c.lineWidth = 1; c.strokeStyle = render.options.wireframeStrokeStyle; c.stroke(); }; /** * Optimised method for drawing body convex hull wireframes in one pass * @private * @method bodyConvexHulls * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodyConvexHulls = function(render, bodies, context) { var c = context, body, part, i, j, k; c.beginPath(); // render convex hulls for (i = 0; i < bodies.length; i++) { body = bodies[i]; if (!body.render.visible || body.parts.length === 1) continue; c.moveTo(body.vertices[0].x, body.vertices[0].y); for (j = 1; j < body.vertices.length; j++) { c.lineTo(body.vertices[j].x, body.vertices[j].y); } c.lineTo(body.vertices[0].x, body.vertices[0].y); } c.lineWidth = 1; c.strokeStyle = 'rgba(255,255,255,0.2)'; c.stroke(); }; /** * Renders body vertex numbers. * @private * @method vertexNumbers * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.vertexNumbers = function(render, bodies, context) { var c = context, i, j, k; for (i = 0; i < bodies.length; i++) { var parts = bodies[i].parts; for (k = parts.length > 1 ? 1 : 0; k < parts.length; k++) { var part = parts[k]; for (j = 0; j < part.vertices.length; j++) { c.fillStyle = 'rgba(255,255,255,0.2)'; c.fillText(i + '_' + j, part.position.x + (part.vertices[j].x - part.position.x) * 0.8, part.position.y + (part.vertices[j].y - part.position.y) * 0.8); } } } }; /** * Renders mouse position. * @private * @method mousePosition * @param {render} render * @param {mouse} mouse * @param {RenderingContext} context */ Render.mousePosition = function(render, mouse, context) { var c = context; c.fillStyle = 'rgba(255,255,255,0.8)'; c.fillText(mouse.position.x + ' ' + mouse.position.y, mouse.position.x + 5, mouse.position.y - 5); }; /** * Draws body bounds * @private * @method bodyBounds * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodyBounds = function(render, bodies, context) { var c = context, engine = render.engine, options = render.options; c.beginPath(); for (var i = 0; i < bodies.length; i++) { var body = bodies[i]; if (body.render.visible) { var parts = bodies[i].parts; for (var j = parts.length > 1 ? 1 : 0; j < parts.length; j++) { var part = parts[j]; c.rect(part.bounds.min.x, part.bounds.min.y, part.bounds.max.x - part.bounds.min.x, part.bounds.max.y - part.bounds.min.y); } } } if (options.wireframes) { c.strokeStyle = 'rgba(255,255,255,0.08)'; } else { c.strokeStyle = 'rgba(0,0,0,0.1)'; } c.lineWidth = 1; c.stroke(); }; /** * Draws body angle indicators and axes * @private * @method bodyAxes * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodyAxes = function(render, bodies, context) { var c = context, engine = render.engine, options = render.options, part, i, j, k; c.beginPath(); for (i = 0; i < bodies.length; i++) { var body = bodies[i], parts = body.parts; if (!body.render.visible) continue; if (options.showAxes) { // render all axes for (j = parts.length > 1 ? 1 : 0; j < parts.length; j++) { part = parts[j]; for (k = 0; k < part.axes.length; k++) { var axis = part.axes[k]; c.moveTo(part.position.x, part.position.y); c.lineTo(part.position.x + axis.x * 20, part.position.y + axis.y * 20); } } } else { for (j = parts.length > 1 ? 1 : 0; j < parts.length; j++) { part = parts[j]; for (k = 0; k < part.axes.length; k++) { // render a single axis indicator c.moveTo(part.position.x, part.position.y); c.lineTo((part.vertices[0].x + part.vertices[part.vertices.length-1].x) / 2, (part.vertices[0].y + part.vertices[part.vertices.length-1].y) / 2); } } } } if (options.wireframes) { c.strokeStyle = 'indianred'; c.lineWidth = 1; } else { c.strokeStyle = 'rgba(255, 255, 255, 0.4)'; c.globalCompositeOperation = 'overlay'; c.lineWidth = 2; } c.stroke(); c.globalCompositeOperation = 'source-over'; }; /** * Draws body positions * @private * @method bodyPositions * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodyPositions = function(render, bodies, context) { var c = context, engine = render.engine, options = render.options, body, part, i, k; c.beginPath(); // render current positions for (i = 0; i < bodies.length; i++) { body = bodies[i]; if (!body.render.visible) continue; // handle compound parts for (k = 0; k < body.parts.length; k++) { part = body.parts[k]; c.arc(part.position.x, part.position.y, 3, 0, 2 * Math.PI, false); c.closePath(); } } if (options.wireframes) { c.fillStyle = 'indianred'; } else { c.fillStyle = 'rgba(0,0,0,0.5)'; } c.fill(); c.beginPath(); // render previous positions for (i = 0; i < bodies.length; i++) { body = bodies[i]; if (body.render.visible) { c.arc(body.positionPrev.x, body.positionPrev.y, 2, 0, 2 * Math.PI, false); c.closePath(); } } c.fillStyle = 'rgba(255,165,0,0.8)'; c.fill(); }; /** * Draws body velocity * @private * @method bodyVelocity * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodyVelocity = function(render, bodies, context) { var c = context; c.beginPath(); for (var i = 0; i < bodies.length; i++) { var body = bodies[i]; if (!body.render.visible) continue; var velocity = Body.getVelocity(body); c.moveTo(body.position.x, body.position.y); c.lineTo(body.position.x + velocity.x, body.position.y + velocity.y); } c.lineWidth = 3; c.strokeStyle = 'cornflowerblue'; c.stroke(); }; /** * Draws body ids * @private * @method bodyIds * @param {render} render * @param {body[]} bodies * @param {RenderingContext} context */ Render.bodyIds = function(render, bodies, context) { var c = context, i, j; for (i = 0; i < bodies.length; i++) { if (!bodies[i].render.visible) continue; var parts = bodies[i].parts; for (j = parts.length > 1 ? 1 : 0; j < parts.length; j++) { var part = parts[j]; c.font = "12px Arial"; c.fillStyle = 'rgba(255,255,255,0.5)'; c.fillText(part.id, part.position.x + 10, part.position.y - 10); } } }; /** * Description * @private * @method collisions * @param {render} render * @param {pair[]} pairs * @param {RenderingContext} context */ Render.collisions = function(render, pairs, context) { var c = context, options = render.options, pair, collision, corrected, bodyA, bodyB, i, j; c.beginPath(); // render collision positions for (i = 0; i < pairs.length; i++) { pair = pairs[i]; if (!pair.isActive) continue; collision = pair.collision; for (j = 0; j < pair.contactCount; j++) { var contact = pair.contacts[j], vertex = contact.vertex; c.rect(vertex.x - 1.5, vertex.y - 1.5, 3.5, 3.5); } } if (options.wireframes) { c.fillStyle = 'rgba(255,255,255,0.7)'; } else { c.fillStyle = 'orange'; } c.fill(); c.beginPath(); // render collision normals for (i = 0; i < pairs.length; i++) { pair = pairs[i]; if (!pair.isActive) continue; collision = pair.collision; if (pair.contactCount > 0) { var normalPosX = pair.contacts[0].vertex.x, normalPosY = pair.contacts[0].vertex.y; if (pair.contactCount === 2) { normalPosX = (pair.contacts[0].vertex.x + pair.contacts[1].vertex.x) / 2; normalPosY = (pair.contacts[0].vertex.y + pair.contacts[1].vertex.y) / 2; } if (collision.bodyB === collision.supports[0].body || collision.bodyA.isStatic === true) { c.moveTo(normalPosX - collision.normal.x * 8, normalPosY - collision.normal.y * 8); } else { c.moveTo(normalPosX + collision.normal.x * 8, normalPosY + collision.normal.y * 8); } c.lineTo(normalPosX, normalPosY); } } if (options.wireframes) { c.strokeStyle = 'rgba(255,165,0,0.7)'; } else { c.strokeStyle = 'orange'; } c.lineWidth = 1; c.stroke(); }; /** * Description * @private * @method separations * @param {render} render * @param {pair[]} pairs * @param {RenderingContext} context */ Render.separations = function(render, pairs, context) { var c = context, options = render.options, pair, collision, corrected, bodyA, bodyB, i, j; c.beginPath(); // render separations for (i = 0; i < pairs.length; i++) { pair = pairs[i]; if (!pair.isActive) continue; collision = pair.collision; bodyA = collision.bodyA; bodyB = collision.bodyB; var k = 1; if (!bodyB.isStatic && !bodyA.isStatic) k = 0.5; if (bodyB.isStatic) k = 0; c.moveTo(bodyB.position.x, bodyB.position.y); c.lineTo(bodyB.position.x - collision.penetration.x * k, bodyB.position.y - collision.penetration.y * k); k = 1; if (!bodyB.isStatic && !bodyA.isStatic) k = 0.5; if (bodyA.isStatic) k = 0; c.moveTo(bodyA.position.x, bodyA.position.y); c.lineTo(bodyA.position.x + collision.penetration.x * k, bodyA.position.y + collision.penetration.y * k); } if (options.wireframes) { c.strokeStyle = 'rgba(255,165,0,0.5)'; } else { c.strokeStyle = 'orange'; } c.stroke(); }; /** * Description * @private * @method inspector * @param {inspector} inspector * @param {RenderingContext} context */ Render.inspector = function(inspector, context) { var engine = inspector.engine, selected = inspector.selected, render = inspector.render, options = render.options, bounds; if (options.hasBounds) { var boundsWidth = render.bounds.max.x - render.bounds.min.x, boundsHeight = render.bounds.max.y - render.bounds.min.y, boundsScaleX = boundsWidth / render.options.width, boundsScaleY = boundsHeight / render.options.height; context.scale(1 / boundsScaleX, 1 / boundsScaleY); context.translate(-render.bounds.min.x, -render.bounds.min.y); } for (var i = 0; i < selected.length; i++) { var item = selected[i].data; context.translate(0.5, 0.5); context.lineWidth = 1; context.strokeStyle = 'rgba(255,165,0,0.9)'; context.setLineDash([1,2]); switch (item.type) { case 'body': // render body selections bounds = item.bounds; context.beginPath(); context.rect(Math.floor(bounds.min.x - 3), Math.floor(bounds.min.y - 3), Math.floor(bounds.max.x - bounds.min.x + 6), Math.floor(bounds.max.y - bounds.min.y + 6)); context.closePath(); context.stroke(); break; case 'constraint': // render constraint selections var point = item.pointA; if (item.bodyA) point = item.pointB; context.beginPath(); context.arc(point.x, point.y, 10, 0, 2 * Math.PI); context.closePath(); context.stroke(); break; } context.setLineDash([]); context.translate(-0.5, -0.5); } // render selection region if (inspector.selectStart !== null) { context.translate(0.5, 0.5); context.lineWidth = 1; context.strokeStyle = 'rgba(255,165,0,0.6)'; context.fillStyle = 'rgba(255,165,0,0.1)'; bounds = inspector.selectBounds; context.beginPath(); context.rect(Math.floor(bounds.min.x), Math.floor(bounds.min.y), Math.floor(bounds.max.x - bounds.min.x), Math.floor(bounds.max.y - bounds.min.y)); context.closePath(); context.stroke(); context.fill(); context.translate(-0.5, -0.5); } if (options.hasBounds) context.setTransform(1, 0, 0, 1, 0, 0); }; /** * Updates render timing. * @method _updateTiming * @private * @param {render} render * @param {number} time */ var _updateTiming = function(render, time) { var engine = render.engine, timing = render.timing, historySize = timing.historySize, timestamp = engine.timing.timestamp; timing.delta = time - timing.lastTime || Render._goodDelta; timing.lastTime = time; timing.timestampElapsed = timestamp - timing.lastTimestamp || 0; timing.lastTimestamp = timestamp; timing.deltaHistory.unshift(timing.delta); timing.deltaHistory.length = Math.min(timing.deltaHistory.length, historySize); timing.engineDeltaHistory.unshift(engine.timing.lastDelta); timing.engineDeltaHistory.length = Math.min(timing.engineDeltaHistory.length, historySize); timing.timestampElapsedHistory.unshift(timing.timestampElapsed); timing.timestampElapsedHistory.length = Math.min(timing.timestampElapsedHistory.length, historySize); timing.engineUpdatesHistory.unshift(engine.timing.lastUpdatesPerFrame); timing.engineUpdatesHistory.length = Math.min(timing.engineUpdatesHistory.length, historySize); timing.engineElapsedHistory.unshift(engine.timing.lastElapsed); timing.engineElapsedHistory.length = Math.min(timing.engineElapsedHistory.length, historySize); timing.elapsedHistory.unshift(timing.lastElapsed); timing.elapsedHistory.length = Math.min(timing.elapsedHistory.length, historySize); }; /** * Returns the mean value of the given numbers. * @method _mean * @private * @param {Number[]} values * @return {Number} the mean of given values */ var _mean = function(values) { var result = 0; for (var i = 0; i < values.length; i += 1) { result += values[i]; } return (result / values.length) || 0; }; /** * @method _createCanvas * @private * @param {} width * @param {} height * @return canvas */ var _createCanvas = function(width, height) { var canvas = document.createElement('canvas'); canvas.width = width; canvas.height = height; canvas.oncontextmenu = function() { return false; }; canvas.onselectstart = function() { return false; }; return canvas; }; /** * Gets the pixel ratio of the canvas. * @method _getPixelRatio * @private * @param {HTMLElement} canvas * @return {Number} pixel ratio */ var _getPixelRatio = function(canvas) { var context = canvas.getContext('2d'), devicePixelRatio = window.devicePixelRatio || 1, backingStorePixelRatio = context.webkitBackingStorePixelRatio || context.mozBackingStorePixelRatio || context.msBackingStorePixelRatio || context.oBackingStorePixelRatio || context.backingStorePixelRatio || 1; return devicePixelRatio / backingStorePixelRatio; }; /** * Gets the requested texture (an Image) via its path * @method _getTexture * @private * @param {render} render * @param {string} imagePath * @return {Image} texture */ var _getTexture = function(render, imagePath) { var image = render.textures[imagePath]; if (image) return image; image = render.textures[imagePath] = new Image(); image.src = imagePath; return image; }; /** * Applies the background to the canvas using CSS. * @method applyBackground * @private * @param {render} render * @param {string} background */ var _applyBackground = function(render, background) { var cssBackground = background; if (/(jpg|gif|png)$/.test(background)) cssBackground = 'url(' + background + ')'; render.canvas.style.background = cssBackground; render.canvas.style.backgroundSize = "contain"; render.currentBackground = background; }; /* * * Events Documentation * */ /** * Fired before rendering * * @event beforeRender * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired after rendering * * @event afterRender * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /* * * Properties Documentation * */ /** * A back-reference to the `Matter.Render` module. * * @deprecated * @property controller * @type render */ /** * A reference to the `Matter.Engine` instance to be used. * * @property engine * @type engine */ /** * A reference to the element where the canvas is to be inserted (if `render.canvas` has not been specified) * * @property element * @type HTMLElement * @default null */ /** * The canvas element to render to. If not specified, one will be created if `render.element` has been specified. * * @property canvas * @type HTMLCanvasElement * @default null */ /** * A `Bounds` object that specifies the drawing view region. * Rendering will be automatically transformed and scaled to fit within the canvas size (`render.options.width` and `render.options.height`). * This allows for creating views that can pan or zoom around the scene. * You must also set `render.options.hasBounds` to `true` to enable bounded rendering. * * @property bounds * @type bounds */ /** * The 2d rendering context from the `render.canvas` element. * * @property context * @type CanvasRenderingContext2D */ /** * The sprite texture cache. * * @property textures * @type {} */ /** * The mouse to render if `render.options.showMousePosition` is enabled. * * @property mouse * @type mouse * @default null */ /** * The configuration options of the renderer. * * @property options * @type {} */ /** * The target width in pixels of the `render.canvas` to be created. * See also the `options.pixelRatio` property to change render quality. * * @property options.width * @type number * @default 800 */ /** * The target height in pixels of the `render.canvas` to be created. * See also the `options.pixelRatio` property to change render quality. * * @property options.height * @type number * @default 600 */ /** * The [pixel ratio](https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio) to use when rendering. * * @property options.pixelRatio * @type number * @default 1 */ /** * A CSS background color string to use when `render.options.wireframes` is disabled. * This may be also set to `'transparent'` or equivalent. * * @property options.background * @type string * @default '#14151f' */ /** * A CSS color string to use for background when `render.options.wireframes` is enabled. * This may be also set to `'transparent'` or equivalent. * * @property options.wireframeBackground * @type string * @default '#14151f' */ /** * A CSS color string to use for stroke when `render.options.wireframes` is enabled. * This may be also set to `'transparent'` or equivalent. * * @property options.wireframeStrokeStyle * @type string * @default '#bbb' */ /** * A flag that specifies if `render.bounds` should be used when rendering. * * @property options.hasBounds * @type boolean * @default false */ /** * A flag to enable or disable all debug information overlays together. * This includes and has priority over the values of: * * - `render.options.showStats` * - `render.options.showPerformance` * * @property options.showDebug * @type boolean * @default false */ /** * A flag to enable or disable the engine stats info overlay. * From left to right, the values shown are: * * - body parts total * - body total * - constraints total * - composites total * - collision pairs total * * @property options.showStats * @type boolean * @default false */ /** * A flag to enable or disable performance charts. * From left to right, the values shown are: * * - average render frequency (e.g. 60 fps) * - exact engine delta time used for last update (e.g. 16.66ms) * - average updates per frame (e.g. 1) * - average engine execution duration (e.g. 5.00ms) * - average render execution duration (e.g. 0.40ms) * - average effective play speed (e.g. '1.00x' is 'real-time') * * Each value is recorded over a fixed sample of past frames (60 frames). * * A chart shown below each value indicates the variance from the average over the sample. * The more stable or fixed the value is the flatter the chart will appear. * * @property options.showPerformance * @type boolean * @default false */ /** * A flag to enable or disable rendering entirely. * * @property options.enabled * @type boolean * @default false */ /** * A flag to toggle wireframe rendering otherwise solid fill rendering is used. * * @property options.wireframes * @type boolean * @default true */ /** * A flag to enable or disable sleeping bodies indicators. * * @property options.showSleeping * @type boolean * @default true */ /** * A flag to enable or disable the debug information overlay. * * @property options.showDebug * @type boolean * @default false */ /** * A flag to enable or disable the collision broadphase debug overlay. * * @deprecated no longer implemented * @property options.showBroadphase * @type boolean * @default false */ /** * A flag to enable or disable the body bounds debug overlay. * * @property options.showBounds * @type boolean * @default false */ /** * A flag to enable or disable the body velocity debug overlay. * * @property options.showVelocity * @type boolean * @default false */ /** * A flag to enable or disable the body collisions debug overlay. * * @property options.showCollisions * @type boolean * @default false */ /** * A flag to enable or disable the collision resolver separations debug overlay. * * @property options.showSeparations * @type boolean * @default false */ /** * A flag to enable or disable the body axes debug overlay. * * @property options.showAxes * @type boolean * @default false */ /** * A flag to enable or disable the body positions debug overlay. * * @property options.showPositions * @type boolean * @default false */ /** * A flag to enable or disable the body angle debug overlay. * * @property options.showAngleIndicator * @type boolean * @default false */ /** * A flag to enable or disable the body and part ids debug overlay. * * @property options.showIds * @type boolean * @default false */ /** * A flag to enable or disable the body vertex numbers debug overlay. * * @property options.showVertexNumbers * @type boolean * @default false */ /** * A flag to enable or disable the body convex hulls debug overlay. * * @property options.showConvexHulls * @type boolean * @default false */ /** * A flag to enable or disable the body internal edges debug overlay. * * @property options.showInternalEdges * @type boolean * @default false */ /** * A flag to enable or disable the mouse position debug overlay. * * @property options.showMousePosition * @type boolean * @default false */ })(); /***/ }), /* 27 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Runner` module is an optional utility that provides a game loop for running a `Matter.Engine` inside a browser environment. * A runner will continuously update a `Matter.Engine` whilst synchronising engine updates with the browser frame rate. * This runner favours a smoother user experience over perfect time keeping. * This runner is optional and is used for development and debugging but could be useful as a starting point for implementing some games and experiences. * Alternatively see `Engine.update` to step the engine directly inside your own game loop implementation as may be needed inside other environments. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Runner */ var Runner = {}; module.exports = Runner; var Events = __webpack_require__(5); var Engine = __webpack_require__(17); var Common = __webpack_require__(0); (function() { Runner._maxFrameDelta = 1000 / 15; Runner._frameDeltaFallback = 1000 / 60; Runner._timeBufferMargin = 1.5; Runner._elapsedNextEstimate = 1; Runner._smoothingLowerBound = 0.1; Runner._smoothingUpperBound = 0.9; /** * Creates a new Runner. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {} options */ Runner.create = function(options) { var defaults = { delta: 1000 / 60, frameDelta: null, frameDeltaSmoothing: true, frameDeltaSnapping: true, frameDeltaHistory: [], frameDeltaHistorySize: 100, frameRequestId: null, timeBuffer: 0, timeLastTick: null, maxUpdates: null, maxFrameTime: 1000 / 30, lastUpdatesDeferred: 0, enabled: true }; var runner = Common.extend(defaults, options); // for temporary back compatibility only runner.fps = 0; return runner; }; /** * Runs a `Matter.Engine` whilst synchronising engine updates with the browser frame rate. * See module and properties descriptions for more information on this runner. * Alternatively see `Engine.update` to step the engine directly inside your own game loop implementation. * @method run * @param {runner} runner * @param {engine} [engine] * @return {runner} runner */ Runner.run = function(runner, engine) { // initial time buffer for the first frame runner.timeBuffer = Runner._frameDeltaFallback; (function onFrame(time){ runner.frameRequestId = Runner._onNextFrame(runner, onFrame); if (time && runner.enabled) { Runner.tick(runner, engine, time); } })(); return runner; }; /** * Performs a single runner tick as used inside `Runner.run`. * See module and properties descriptions for more information on this runner. * Alternatively see `Engine.update` to step the engine directly inside your own game loop implementation. * @method tick * @param {runner} runner * @param {engine} engine * @param {number} time */ Runner.tick = function(runner, engine, time) { var tickStartTime = Common.now(), engineDelta = runner.delta, updateCount = 0; // find frame delta time since last call var frameDelta = time - runner.timeLastTick; // fallback for unusable frame delta values (e.g. 0, NaN, on first frame or long pauses) if (!frameDelta || !runner.timeLastTick || frameDelta > Math.max(Runner._maxFrameDelta, runner.maxFrameTime)) { // reuse last accepted frame delta else fallback frameDelta = runner.frameDelta || Runner._frameDeltaFallback; } if (runner.frameDeltaSmoothing) { // record frame delta over a number of frames runner.frameDeltaHistory.push(frameDelta); runner.frameDeltaHistory = runner.frameDeltaHistory.slice(-runner.frameDeltaHistorySize); // sort frame delta history var deltaHistorySorted = runner.frameDeltaHistory.slice(0).sort(); // sample a central window to limit outliers var deltaHistoryWindow = runner.frameDeltaHistory.slice( deltaHistorySorted.length * Runner._smoothingLowerBound, deltaHistorySorted.length * Runner._smoothingUpperBound ); // take the mean of the central window var frameDeltaSmoothed = _mean(deltaHistoryWindow); frameDelta = frameDeltaSmoothed || frameDelta; } if (runner.frameDeltaSnapping) { // snap frame delta to the nearest 1 Hz frameDelta = 1000 / Math.round(1000 / frameDelta); } // update runner values for next call runner.frameDelta = frameDelta; runner.timeLastTick = time; // accumulate elapsed time runner.timeBuffer += runner.frameDelta; // limit time buffer size to a single frame of updates runner.timeBuffer = Common.clamp( runner.timeBuffer, 0, runner.frameDelta + engineDelta * Runner._timeBufferMargin ); // reset count of over budget updates runner.lastUpdatesDeferred = 0; // get max updates per frame var maxUpdates = runner.maxUpdates || Math.ceil(runner.maxFrameTime / engineDelta); // create event object var event = { timestamp: engine.timing.timestamp }; // tick events before update Events.trigger(runner, 'beforeTick', event); Events.trigger(runner, 'tick', event); var updateStartTime = Common.now(); // simulate time elapsed between calls while (engineDelta > 0 && runner.timeBuffer >= engineDelta * Runner._timeBufferMargin) { // update the engine Events.trigger(runner, 'beforeUpdate', event); Engine.update(engine, engineDelta); Events.trigger(runner, 'afterUpdate', event); // consume time simulated from buffer runner.timeBuffer -= engineDelta; updateCount += 1; // find elapsed time during this tick var elapsedTimeTotal = Common.now() - tickStartTime, elapsedTimeUpdates = Common.now() - updateStartTime, elapsedNextEstimate = elapsedTimeTotal + Runner._elapsedNextEstimate * elapsedTimeUpdates / updateCount; // defer updates if over performance budgets for this frame if (updateCount >= maxUpdates || elapsedNextEstimate > runner.maxFrameTime) { runner.lastUpdatesDeferred = Math.round(Math.max(0, (runner.timeBuffer / engineDelta) - Runner._timeBufferMargin)); break; } } // track timing metrics engine.timing.lastUpdatesPerFrame = updateCount; // tick events after update Events.trigger(runner, 'afterTick', event); // show useful warnings if needed if (runner.frameDeltaHistory.length >= 100) { if (runner.lastUpdatesDeferred && Math.round(runner.frameDelta / engineDelta) > maxUpdates) { Common.warnOnce('Matter.Runner: runner reached runner.maxUpdates, see docs.'); } else if (runner.lastUpdatesDeferred) { Common.warnOnce('Matter.Runner: runner reached runner.maxFrameTime, see docs.'); } if (typeof runner.isFixed !== 'undefined') { Common.warnOnce('Matter.Runner: runner.isFixed is now redundant, see docs.'); } if (runner.deltaMin || runner.deltaMax) { Common.warnOnce('Matter.Runner: runner.deltaMin and runner.deltaMax were removed, see docs.'); } if (runner.fps !== 0) { Common.warnOnce('Matter.Runner: runner.fps was replaced by runner.delta, see docs.'); } } }; /** * Ends execution of `Runner.run` on the given `runner` by canceling the frame loop. * Alternatively to temporarily pause the runner, see `runner.enabled`. * @method stop * @param {runner} runner */ Runner.stop = function(runner) { Runner._cancelNextFrame(runner); }; /** * Schedules the `callback` on this `runner` for the next animation frame. * @private * @method _onNextFrame * @param {runner} runner * @param {function} callback * @return {number} frameRequestId */ Runner._onNextFrame = function(runner, callback) { if (typeof window !== 'undefined' && window.requestAnimationFrame) { runner.frameRequestId = window.requestAnimationFrame(callback); } else { throw new Error('Matter.Runner: missing required global window.requestAnimationFrame.'); } return runner.frameRequestId; }; /** * Cancels the last callback scheduled by `Runner._onNextFrame` on this `runner`. * @private * @method _cancelNextFrame * @param {runner} runner */ Runner._cancelNextFrame = function(runner) { if (typeof window !== 'undefined' && window.cancelAnimationFrame) { window.cancelAnimationFrame(runner.frameRequestId); } else { throw new Error('Matter.Runner: missing required global window.cancelAnimationFrame.'); } }; /** * Returns the mean of the given numbers. * @method _mean * @private * @param {Number[]} values * @return {Number} the mean of given values. */ var _mean = function(values) { var result = 0, valuesLength = values.length; for (var i = 0; i < valuesLength; i += 1) { result += values[i]; } return (result / valuesLength) || 0; }; /* * * Events Documentation * */ /** * Fired once at the start of the browser frame, before any engine updates. * * @event beforeTick * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired once at the start of the browser frame, after `beforeTick`. * * @event tick * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired once at the end of the browser frame, after `beforeTick`, `tick` and after any engine updates. * * @event afterTick * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired before each and every engine update in this browser frame (if any). * There may be multiple engine update calls per browser frame (or none) depending on framerate and timestep delta. * * @event beforeUpdate * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /** * Fired after each and every engine update in this browser frame (if any). * There may be multiple engine update calls per browser frame (or none) depending on framerate and timestep delta. * * @event afterUpdate * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ /* * * Properties Documentation * */ /** * The fixed timestep size used for `Engine.update` calls in milliseconds, known as `delta`. * * This value is recommended to be `1000 / 60` ms or smaller (i.e. equivalent to at least 60hz). * * Smaller `delta` values provide higher quality results at the cost of performance. * * You should usually avoid changing `delta` during running, otherwise quality may be affected. * * For smoother frame pacing choose a `delta` that is an even multiple of each display FPS you target, i.e. `1000 / (n * fps)` as this helps distribute an equal number of updates over each display frame. * * For example with a 60 Hz `delta` i.e. `1000 / 60` the runner will on average perform one update per frame on displays running 60 FPS and one update every two frames on displays running 120 FPS, etc. * * Where as e.g. using a 240 Hz `delta` i.e. `1000 / 240` the runner will on average perform four updates per frame on displays running 60 FPS and two updates per frame on displays running 120 FPS, etc. * * Therefore `Runner.run` will call multiple engine updates (or none) as needed to simulate the time elapsed between browser frames. * * In practice the number of updates in any particular frame may be restricted to respect the runner's performance budgets. These are specified by `runner.maxFrameTime` and `runner.maxUpdates`, see those properties for details. * * @property delta * @type number * @default 1000 / 60 */ /** * A flag that can be toggled to enable or disable tick calls on this runner, therefore pausing engine updates and events while the runner loop remains running. * * @property enabled * @type boolean * @default true */ /** * The accumulated time elapsed that has yet to be simulated in milliseconds. * This value is clamped within certain limits (see `Runner.tick` code). * * @private * @property timeBuffer * @type number * @default 0 */ /** * The measured time elapsed between the last two browser frames measured in milliseconds. * This is useful e.g. to estimate the current browser FPS using `1000 / runner.frameDelta`. * * @readonly * @property frameDelta * @type number */ /** * Enables averaging to smooth frame rate measurements and therefore stabilise play rate. * * @property frameDeltaSmoothing * @type boolean * @default true */ /** * Rounds measured browser frame delta to the nearest 1 Hz. * This option can help smooth frame rate measurements and simplify handling hardware timing differences e.g. 59.94Hz and 60Hz displays. * For best results you should also round your `runner.delta` equivalent to the nearest 1 Hz. * * @property frameDeltaSnapping * @type boolean * @default true */ /** * A performance budget that limits execution time allowed for this runner per browser frame in milliseconds. * * To calculate the effective browser FPS at which this throttle is applied use `1000 / runner.maxFrameTime`. * * This performance budget is intended to help maintain browser interactivity and help improve framerate recovery during temporary high CPU usage. * * This budget only covers the measured time elapsed executing the functions called in the scope of the runner tick, including `Engine.update` and its related user event callbacks. * * You may also reduce this budget to allow for any significant additional processing you perform on the same thread outside the scope of this runner tick, e.g. rendering time. * * See also `runner.maxUpdates`. * * @property maxFrameTime * @type number * @default 1000 / 30 */ /** * An optional limit for maximum engine update count allowed per frame tick in addition to `runner.maxFrameTime`. * * Unless you set a value it is automatically chosen based on `runner.delta` and `runner.maxFrameTime`. * * See also `runner.maxFrameTime`. * * @property maxUpdates * @type number * @default null */ /** * The timestamp of the last call to `Runner.tick` used to measure `frameDelta`. * * @private * @property timeLastTick * @type number * @default 0 */ /** * The id of the last call to `Runner._onNextFrame`. * * @private * @property frameRequestId * @type number * @default null */ })(); /***/ }), /* 28 */ /***/ (function(module, exports, __webpack_require__) { /** * This module has now been replaced by `Matter.Collision`. * * All usage should be migrated to `Matter.Collision`. * For back-compatibility purposes this module will remain for a short term and then later removed in a future release. * * The `Matter.SAT` module contains methods for detecting collisions using the Separating Axis Theorem. * * @class SAT * @deprecated */ var SAT = {}; module.exports = SAT; var Collision = __webpack_require__(8); var Common = __webpack_require__(0); var deprecated = Common.deprecated; (function() { /** * Detect collision between two bodies using the Separating Axis Theorem. * @deprecated replaced by Collision.collides * @method collides * @param {body} bodyA * @param {body} bodyB * @return {collision} collision */ SAT.collides = function(bodyA, bodyB) { return Collision.collides(bodyA, bodyB); }; deprecated(SAT, 'collides', 'SAT.collides ➤ replaced by Collision.collides'); })(); /***/ }), /* 29 */ /***/ (function(module, exports, __webpack_require__) { /** * The `Matter.Svg` module contains methods for converting SVG images into an array of vector points. * * To use this module you also need the SVGPathSeg polyfill: https://github.com/progers/pathseg * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Svg */ var Svg = {}; module.exports = Svg; var Bounds = __webpack_require__(1); var Common = __webpack_require__(0); (function() { /** * Converts an SVG path into an array of vector points. * If the input path forms a concave shape, you must decompose the result into convex parts before use. * See `Bodies.fromVertices` which provides support for this. * Note that this function is not guaranteed to support complex paths (such as those with holes). * You must load the `pathseg.js` polyfill on newer browsers. * @method pathToVertices * @param {SVGPathElement} path * @param {Number} [sampleLength=15] * @return {Vector[]} points */ Svg.pathToVertices = function(path, sampleLength) { if (typeof window !== 'undefined' && !('SVGPathSeg' in window)) { Common.warn('Svg.pathToVertices: SVGPathSeg not defined, a polyfill is required.'); } // https://github.com/wout/svg.topoly.js/blob/master/svg.topoly.js var i, il, total, point, segment, segments, segmentsQueue, lastSegment, lastPoint, segmentIndex, points = [], lx, ly, length = 0, x = 0, y = 0; sampleLength = sampleLength || 15; var addPoint = function(px, py, pathSegType) { // all odd-numbered path types are relative except PATHSEG_CLOSEPATH (1) var isRelative = pathSegType % 2 === 1 && pathSegType > 1; // when the last point doesn't equal the current point add the current point if (!lastPoint || px != lastPoint.x || py != lastPoint.y) { if (lastPoint && isRelative) { lx = lastPoint.x; ly = lastPoint.y; } else { lx = 0; ly = 0; } var point = { x: lx + px, y: ly + py }; // set last point if (isRelative || !lastPoint) { lastPoint = point; } points.push(point); x = lx + px; y = ly + py; } }; var addSegmentPoint = function(segment) { var segType = segment.pathSegTypeAsLetter.toUpperCase(); // skip path ends if (segType === 'Z') return; // map segment to x and y switch (segType) { case 'M': case 'L': case 'T': case 'C': case 'S': case 'Q': x = segment.x; y = segment.y; break; case 'H': x = segment.x; break; case 'V': y = segment.y; break; } addPoint(x, y, segment.pathSegType); }; // ensure path is absolute Svg._svgPathToAbsolute(path); // get total length total = path.getTotalLength(); // queue segments segments = []; for (i = 0; i < path.pathSegList.numberOfItems; i += 1) segments.push(path.pathSegList.getItem(i)); segmentsQueue = segments.concat(); // sample through path while (length < total) { // get segment at position segmentIndex = path.getPathSegAtLength(length); segment = segments[segmentIndex]; // new segment if (segment != lastSegment) { while (segmentsQueue.length && segmentsQueue[0] != segment) addSegmentPoint(segmentsQueue.shift()); lastSegment = segment; } // add points in between when curving // TODO: adaptive sampling switch (segment.pathSegTypeAsLetter.toUpperCase()) { case 'C': case 'T': case 'S': case 'Q': case 'A': point = path.getPointAtLength(length); addPoint(point.x, point.y, 0); break; } // increment by sample value length += sampleLength; } // add remaining segments not passed by sampling for (i = 0, il = segmentsQueue.length; i < il; ++i) addSegmentPoint(segmentsQueue[i]); return points; }; Svg._svgPathToAbsolute = function(path) { // http://phrogz.net/convert-svg-path-to-all-absolute-commands // Copyright (c) Gavin Kistner // http://phrogz.net/js/_ReuseLicense.txt // Modifications: tidy formatting and naming var x0, y0, x1, y1, x2, y2, segs = path.pathSegList, x = 0, y = 0, len = segs.numberOfItems; for (var i = 0; i < len; ++i) { var seg = segs.getItem(i), segType = seg.pathSegTypeAsLetter; if (/[MLHVCSQTA]/.test(segType)) { if ('x' in seg) x = seg.x; if ('y' in seg) y = seg.y; } else { if ('x1' in seg) x1 = x + seg.x1; if ('x2' in seg) x2 = x + seg.x2; if ('y1' in seg) y1 = y + seg.y1; if ('y2' in seg) y2 = y + seg.y2; if ('x' in seg) x += seg.x; if ('y' in seg) y += seg.y; switch (segType) { case 'm': segs.replaceItem(path.createSVGPathSegMovetoAbs(x, y), i); break; case 'l': segs.replaceItem(path.createSVGPathSegLinetoAbs(x, y), i); break; case 'h': segs.replaceItem(path.createSVGPathSegLinetoHorizontalAbs(x), i); break; case 'v': segs.replaceItem(path.createSVGPathSegLinetoVerticalAbs(y), i); break; case 'c': segs.replaceItem(path.createSVGPathSegCurvetoCubicAbs(x, y, x1, y1, x2, y2), i); break; case 's': segs.replaceItem(path.createSVGPathSegCurvetoCubicSmoothAbs(x, y, x2, y2), i); break; case 'q': segs.replaceItem(path.createSVGPathSegCurvetoQuadraticAbs(x, y, x1, y1), i); break; case 't': segs.replaceItem(path.createSVGPathSegCurvetoQuadraticSmoothAbs(x, y), i); break; case 'a': segs.replaceItem(path.createSVGPathSegArcAbs(x, y, seg.r1, seg.r2, seg.angle, seg.largeArcFlag, seg.sweepFlag), i); break; case 'z': case 'Z': x = x0; y = y0; break; } } if (segType == 'M' || segType == 'm') { x0 = x; y0 = y; } } }; })(); /***/ }), /* 30 */ /***/ (function(module, exports, __webpack_require__) { /** * This module has now been replaced by `Matter.Composite`. * * All usage should be migrated to the equivalent functions found on `Matter.Composite`. * For example `World.add(world, body)` now becomes `Composite.add(world, body)`. * * The property `world.gravity` has been moved to `engine.gravity`. * * For back-compatibility purposes this module will remain as a direct alias to `Matter.Composite` in the short term during migration. * Eventually this alias module will be marked as deprecated and then later removed in a future release. * * @class World */ var World = {}; module.exports = World; var Composite = __webpack_require__(6); var Common = __webpack_require__(0); (function() { /** * See above, aliases for back compatibility only */ World.create = Composite.create; World.add = Composite.add; World.remove = Composite.remove; World.clear = Composite.clear; World.addComposite = Composite.addComposite; World.addBody = Composite.addBody; World.addConstraint = Composite.addConstraint; })(); /***/ }) /******/ ]); });